
A CNN-Based Routing Scheme for Minimizing
TCP Flow Completion Time in SD-DCNs

Yingjie Zhou, Mingchun Xu, and Yu Chen
National Engineering Lab for Mobile Network Technologies

Beijing University of Posts & Telecommunications, Beijing, P.R.China
{yingjiezhou, mingchunxu, yu.chen}@bupt.edu.cn

Abstract—Data centers play a vital role in supporting the
increasing demand from the six-generation (6G) networks for
cloud services, big data, artificial intelligence and other data-
intensive tasks. Software-defined data center networks (SD-
DCNs) represent a natural evolution of traditional data center
architectures aimed at improving network utilization. In this
paper, we consider routing optimization for minimizing the
completion time of transmission control protocol (TCP) flows
in SD-DCNs. Specifically, we propose a routing scheme based
on convolutional neural networks (CNN). Under different traffic
transmission scenarios in SD-DCNs, the simulation results show
that the flow completion time (FCT) of our scheme is much
shorter compared to the equal-cost multipath (ECMP) and the
shortest path first (SPF) algorithm, particularly in scenarios
involving high-demand applications.

Index Terms—Software-defined data center networks, flow
completion time, CNN, routing.

I. INTRODUCTION

The six-generation (6G) cloud services have wide applica-
tions including industries, education, cities, internet of things
(loT) devices, and beyond [1]. Moreover, data centers provide
an essential and physical infrastructure for six-generation (6G)
cloud services [2]. To ensure high quality of service (QoS) in
6G cloud services, it is possible to integrate software-defined
networking (that is a new network architecture capable of
enhancing data transmission speed and bandwidth utilization)
with data center networks (DCNs) as a natural evolution of
traditional DCNs [3]; and such an integration is termed SD-
DCNs and has been studied in [4].

A significant portion of traffic in data centers is generated
by time-sensitive online applications such as social networking
and instant messaging [5]. To provide low-latency service
delivery for these applications, researches focusing on the
flow completion time (FCT) of TCP flows have been con-
ducted. Marco et al. [6] used a recursive model to derive the
completion time of short-lived TCP flows by decomposing it
into connection and transmission. Luan et al. [7] employed
a semi-markov process to model the evolution of the TCP
congestion window and deduced the flow completion time
(FCT) distribution based on the queueing theory. Based on
the theoretical analysis, the FCT provisioning can be achieved
through optimized routing, which can be implemented in SD-
DCNs.

Routing optimization in SD-DCNs mostly used flow-based
routing algorithm in the SDN domain. It can be classified into

two categories: 1) route based on traditional flow scheduling;
and 2) route based on artificial intelligence (AI). Dhanya et
al. [8]implemented equal cost multi path (ECMP) routing on
SDN-based fat tree data center using the next hop selection
method, Mod-N with hashing over packet header fields and
it is limited to static load balanced routing method. Zang et
al. [9] utilize flow information collected from edge switches
and selectively reroute some flows using segment routing
technology. With the development of machine learning (ML)
in SDN, Jiang et al. [10] used the LightGBM toolbox to
build a pre-trained model for routing prediction. Marwa et
al. [11] provided a routing optimization based on Q-learning
model to balance energy consumption and QoS-requirements
satisfaction. However, the above work doesn’t consider the
critical factors: the flow completion time and the dynamic
impact of TCP congestion control mechanisms on flow rates.

In this paper, we use the AI-based routing scheme to reduce
the FCT in SD-DCNs. Our contribution is listed below:

1) we proposed a flow-based routing algorithm using fixed
point iterations;

2) for the first time, we apply the convolutional neural
network (CNN) to routing optimization for TCP appli-
cations in SD-DCNs.

To the best of our knowledge, these are not addressed before.
The CNN-based scheme has two main steps: 1)it uses the
flow-based routing algorithm and a simple network simulator
to generate a dataset on demand matrix, while also adjusting
the input demand from low to high to analogize the dynamic
behevior of TCP traffic during transmission; and 2) based
on this dataset, it uses CNN to build a pre-trained model to
predict routes and updates the routing table periodically to
adapt to different network status. Its implementation resides
in the application layer of SD-DCNs.

The remainder of the paper is organized as follows. Sec-
tion II presents the network model of SD-DCNs with TCP
traffic. The proposed CNN-based routing scheme is introduced
in detail in Section III. Simulation results and performance
analysis are presented in Section IV. We summarize our work
in Section V.

II. NETWORK MODEL

We consider a basic SD-DCN architecture given in Fig. 1
including three layers: the data layer, the control layer and
the application layer. The data layer illustrates the topology



Memorystore

GPUCPU Other
resources

Routing
model ...Nework state

moniroting
Deep learning

model
Application

Layer

Control
Layer

Edge

Aggregation

Core

Data
Layer

Fig. 1: SD-DCN architecture.

of fat-tree with k = 4, which consists of k pods with k-port
switches. Each pod is composed of two (aggregation and edge)
layers of k

2 switches. The network is modelled a directed graph
G(V,E), where V is the set of SDN switches and E is the set
of possible links between the switches through available ports.
The ordered pairs (vi, vj) represents the link from vi to vj .
Each link (vi, vj) has a capacity cij . A TCP flow from vi to
vj over a path pij ⊂ V is fij . Let F be the set of K flows.
Each flow fk ∈ F is defined by the tuple (sk, dk), where sk
represents the source host, and dk represents the destination
host.

The aim of our solution is to find all routes P =
{pf1 , pf2 , ..., pfK} to minimize flow completion time where
pfk is the set of routes composed of active links belonging to
the flow fk. Flow completion time is affected by the TCP
flow’s size and TCP transmission process. The number of
the packets is flow_size/mss and mss is the maximum
segment size of TCP. Based on [7], we model the congestion
avoidance behavior of TCP in terms of “rounds”. The state
transition diagram of TCP (Tahoe) congestion control is shown
in Fig. 2. The rounds of TCP flows depend on the congestion
window in three states: 1) slow start, 2) congestion avoiding
and 3) fast recovery. The flow completion time T is:

T =

m∑
i=1

Ti, (1)

where m is the number of rounds and Ti is the transfer time
of the ith round.

The transfer time of the round consists of the time of
consecutive multiple hops on the same path, and if multiple
flows pass through a switch together, the transfer time of the
round is also determined by other flows. Consider the virtual
network simulator with a node set N = {1, 2, 3, · · · , n}, and
N = V because the controller has the complete topology
information of the data layer. Assume that a traffic flow from
node s to node t over a path ps,t ⊂ N. The transfer time in

Slow Start Congestion
Avoidance

Fast
Recovery

cwnd >= ssthresh

Timeout: restart

New
 ACK

Triple duplicate ACK
ssthresh = cwnd / 2

cwnd = ssthresh + 3MSS

Triple duplicate ACK
ssthresh = cwnd / 2

cwnd = ssthresh + 3MSS

Timeout: restart

Timeout: restart

Multiplicative increase Additive increase

Multiplicative increase
(Temporary)

Fig. 2: State transition diagram of TCP congestion control.

the ith round is a sum of the transmission delay and queueing
delay along the path ps,t:

Ti =
∑

k∈ps,t

(
W∑

w=1

sk + qk

)
, (2)

where W is the current size of TCP congestion window
(also means the number of packets in the round), sk is the
transmission delay of the packet and qk is the queueing delay
at the kth node. So the flow completion time can be expressed
as:

T =

m∑
i=1

∑
k∈ps,t

(
W∑

w=1

sk + qk

)
. (3)

Consider a path-edge matrix A (aij ∈ {0, 1}), i.e., for the
flow j, if link i is chosen, then aij = 1, otherwise aij = 0.
Therefore, A is a zero-one matrix. γ is the K-dimension vector
and γj is the arrival rate of the flow j. Let λuv denotes the total
arrival rate of the link (u, v) and L̄ denotes average packet
length. dj is the FCT of the flow j. We then formulate the
minimum flow completion time routing problem as a multi-
objective optimization:

min
A∈RV ×K

(d1(Aγ), d2(Aγ), ..., dk(Aγ))

s.t. λ= Aγ∑
(u,v)∈E λuv=

∑
(v,z)∈E λvz

λuvL̄< cu,v.

(4)

To solve the above problem, we proposed a CNN-based
routing scheme and it will be introduced in detail in Sec-
tion III.

III. CNN-BASED ROUTING SCHEME

Our proposed routing scheme resides in the application layer
of Fig. 1; and as shown in Fig. 3, it has two main modules:
1) routing and 2) CNN. The modules operate in the following
two steps:

1) Step 1: the routing module uses a built-in virtual net-
work simulator and a routing algorithm that minimizes
the flow completion time to generate labeled data based
on the topology monitoring; the labeled data is then
stored in a database;



The Data Layer Traffic
Sampling

Topology
Monitoring

Database

Routing Prediction

Routing Module

Minimize FCT Routing

DL Module
CNN

Fig. 3: Proposed routing scheme.

2) Step 2: the CNN module trains those data for the
correspondence between the demand matrix and the
routing table; the resultant prediction model is employed
for routing computation in SD-DCNs.

The detailed explanation of the modules is given in Sections
III-A and Sections III-B, respectively.

A. Routing Module: Minimizing FCT in SD-DCNs

The transfer of each round can be analyzed based on
the queueing theory and network flow theory. The virtual
network simulator uses a discrete-event simulator that has the
identical network topology of the SD-DCN. The network can
be modeled as a queueing network due to SDN switches’ store-
and-forward mechanism. Based on [7], we assume that in
network scenarios with a large number of flows, the arrival of
packets follows the Poisson distribution and the first-in-first-
out (FIFO) discipline is used, then each queue of the target
network can be modeled as an M/D/1/FIFO system. The
average delay of an M/D/1/FIFO system is:

D =
1

µ
+

ρ

2µ (1− ρ)
, (5)

where ρ = λ/µ, λ is the total arrival rate of the link and
µ is the average service rate. We use (5) to calculate the
transmission delay and queueing delay of (3). The completion
time of TCP flows can be expressed as:

T =

n∑
i=1

∑
k∈ps,t

(
W∑

w=1

(
1

µk

)
+

ρk
2µk (1− ρk)

)
. (6)

We applied the algorithms in [10], [12] to develop an
iterative algorithm using fixed point argument method. We
introduce the vector notation first:

f = (γ1, γ2, ..., γM ) , (7)

where f is the flow vector of the network, and γi is the external
arrival rate of flow fi. Let p(n) denotes the path vector at
the nth iteration of the algorithm whose ith component p(n)i

represents the path for fi:

p(n) =
(
p
(n)
1 , p

(n)
2 , ..., p

(n)
M

)
. (8)

The detailed steps are shown in Algorithm 1. In the initial
state, there is no payload in the network, once the first
iteration is completed, the network at this time uses p(1) to

Algorithm 1 Flow-based Routing Algorithm Using Fixed
Point Argument Method
Input: network topology G(V,E), flow vector f ;
Output: the minimum FCT path vector p;
1: p(0) = []
2: n = 0
3: for fi ∈ f do
4: use the algorithm in [12] to get the initial path pi for flow fi
5: p(n).append(pi)
6: for each link (u, v) ⊂ p

(n)
i do

7: (u, v).pps = (u, v).pps + fi.pps
8: pps means packets per second
9: end for

10: end for
11: repeat
12: n = n+ 1
13: for fi ∈ f do
14: for each link (u, v) ⊂ p

(n−1)
i do

15: (u, v).pps = (u, v).pps - fi.pps
16: end for
17: for each link (u, v) ⊂ E do
18: (u, v).pps = (u, v).pps + fi.pps
19: end for
20: use (6) to calculate the delay as link’s weight
21: use the algorithm in [12] to get the path pi for flow fi
22: for each link (u, v) ̸⊂ pi do
23: (u, v).pps = (u, v).pps - fi.pps
24: end for
25: p

(n)
i = pi

26: end for
27: until p(n) == p(n−1)

28: p = p(n)

allocate flows for the second iteration. And whichever flow
is being calculated will be eliminated from the network and
recalculated the path. The iteration process continues until the
path vector in the current iteration matches that of the previous
iteration.

The major drawback of Algorithm 1 is that it only works for
a preknown demand matrix, while the aim of our scheme is
to route the data layer dynamically. To avoid the problem, we
use deep-learning to assist routing. The routing module creates
a unique network situation dataset for training in the CNN
module. In this work, we consider different network loads to
simulate TCP flows changing with the window size during
transmission, then simulate the target network using different
demand matrices from light to high network loads (i.e., from
ρ = 0.1 to ρ = 0.9) to create the dataset. This extensive
dataset serves as the foundation for the CNN module.

B. CNN Module: CNN-Based Routing Table Prediction

The architecture of CNN module is presented in Fig. 4,
mainly consisted of three parts: convolution layers, pooling
layers and fully connected layers [13]. The training process
can be divided into two value propagation steps: the for-
ward propagation and the backward propagation. The forward
propagation is to transfer input data from the input layer to
the output layer, generating the predicted results, while the
backward propagation utilizes the predicted results to adjust
the weights and biases of the CNN. The CNN module is
thoroughly described as follows.



Convolution ConvolutionPooling Pooling Fully
connected

Output

Time Intervals Demand Matrix

Input

Fig. 4: The architecture of CNN module.

1) Matrix Input: We select the demand matrix in Fig. 4
as the input. It can be denoted as a two-dimensional matrix X,
where Xij is the packet generation rate of the flow from the
source node i to the destination node j. Take the scenario in
fig. 3 as an example. X is set to a 16× 16 matrix and can be
obtained in SDN controller, including flows between all hosts.
2) Convolution Layers: The convolution opreation is to

extract the distinguished features of the input, of which the
parameters (weights and biases) consist of a set of learnable
filters. Let Wl be a M ×N matrix to denote the filter and the
obtained feature map can be shown as follows [14].

xl
i,j = (X l−1 ∗Wl)(i, j) + bl

=

M∑
m=1

N∑
n=1

Wm,na
l−1
i+m,j+n + bl,

(9)

ali,j = f(xl
i,j), (10)

where xl is the output feature of the demand matrix at the lth

layer and X l−1 is the input feature matrix of the lth layer.
f(·) is the activation function and ali,j is the activated value
of the unit in the ith row and jth column of the feature map.
bl denotes the bias of the filter and is usually a single numeric
value. al−1

i+m,j+n is the activated value of unit in the (i+m)th

row and (j+n)th column. The most commonly used activation
function is the rectified linear unit (ReLU) function.

3) Softmax Output: The output layer of CNN adopts
Softmax as the classifition function to realize routing selection
in DCNs. Each neuron in the layer contains an excitation
function pi(z):

pi(z) =
ezi

m∑
j=1

ezj
,

(11)

zi = wix+ b, (12)

where
m∑
i=1

pi(z) = 1. The loss function of Softmax is denoted

as LOs:

LOs = − 1

n

n∑
i=1

yi(ln a) + (1− yi) ln (1− a), (13)

a =
1

1 + e−x
. (14)

We use one-hot coding to represent the output label in the
train dataset. The target routing table is marked as 1, and the
others are 0. For example, when the load ρ is equal to 0.1,
the first routing table will be selected and it is coded as (1, 0,
..., 0). After training, input a demand matrix and the Softmax
output is a vector such as (0.8, 0.1, 0.05, ...). The maximum
probability is 0.8, indicating that the routing table is table 1.

We used the dataset generated from the section III-A to
train the CNN. It can be denoted as D = {(Xk, yk), k =
1, 2, ..., n}, Xk ∈ RN×N , yk ∈ R1×9, where n is the number
of samples. Considering the CNN training will consume a lot
of computing resources, it is placed in the application layer
in Fig. 3. With the training of model, each neuron gets an
invariable weight. When the loss of the CNN model is low
and tends to stablize, we can obtain the final model. The
SDN controller will sample the network traffic as the input
and utilize the trained CNN to deliver the flow table for
packet forwarding in the data layer. Our scheme formulates
an intelligent routing strategy and the FCT of the flows will
be lower.

IV. RESULTS AND DISCUSSION

We implemented our scheme in the application layer and
evaluate the performance in an SD-DCN network simulator
based on the architecture of Fig. 3. We consider the SD-DCN
with a fat-tree topology: k = 4 in the data layer. Each link
has heterogeneous bandwidth, which is randomly generated
between 1Gbps and 10GMbps. Each flow has identical size of
1 MB. We simulated three traffic patterns: one-to-one traffic,
one-to-all traffic and all-to-all traffic [5]:

1) one-to-one traffic: We generate traffic from one pod to
another pod in the network. The hosts belonging to the
pod send flows to all hosts belonging to another pod.

2) one-to-all traffic: We generate traffic from one pod to
other pods in the network. The hosts belonging to the
pod send flows to all hosts belonging to other pods.

3) all-to-all traffic: We generate traffic from each pod to
other pods in the network. Each host sends flows to every
other hosts from different pods.

Before we evaluated the TCP performance of our scheme,
we first evaluate the performance of the CNN model in Section
IV-A. In Section IV-B, we discuss the FCT performance in the
SD-DCN we considered in this paper.

A. CNN Model Analysis

This section determines the structure of CNN. In order to
improve the accuracy and decrease the training time, we pro-
vide 9 different CNN structures, and the detailed information



TABLE I: The detailed CNN Structure information.

No. Input Layer Convolution
Layer (Kernel)

Pooling Layer Convolution
Layer

Pooling Layer Fully Connected
Layer

Output Layer

S1 16× 16 3× 3× 5 2× 2 3× 3× 5 2× 2 16× 16× 5× 9 1× 9

S2 16× 16 3× 3× 10 2× 2 3× 3× 10 2× 2 16×16×10×9 1× 9

S3 16× 16 3× 3× 15 2× 2 3× 3× 15 2× 2 16×16×15×9 1× 9

S4 16× 16 5× 5× 5 2× 2 5× 5× 5 2× 2 16× 16× 5× 9 1× 9

S5 16× 16 5× 5× 10 2× 2 5× 5× 10 2× 2 16×16×10×9 1× 9

S6 16× 16 5× 5× 15 2× 2 5× 5× 15 2× 2 16×16×15×9 1× 9

S7 16× 16 7× 7× 5 2× 2 7× 7× 5 2× 2 16× 16× 5× 9 1× 9

S8 16× 16 7× 7× 10 2× 2 7× 7× 10 2× 2 16×16×10×9 1× 9

S9 16× 16 7× 7× 15 2× 2 7× 7× 15 2× 2 16×16×15×9 1× 9

TABLE II: The accuracy of different CNN structures.

No. S1 S2 S3 S4 S5 S6 S7 S8 S9

The Accuracy 0.9327 0.9956 0.9978 0.9674 1 1 0.9913 1 1

The Convergence Time (s) 8.54 6.93 7.20 6.48 5.12 6.64 7.49 6.21 7.36

is shown in Table I. The convolution kernel varies between
3 × 3, 5 × 5 and 7 × 7, and the filter of pooling layer is set
2 × 2. We compute the accuracy and the convergence time
that are shown in Table II. We can observe that the fifth CNN
structure (i.e., S5) contributes the best performance. With the
increasing number and size of convolution kernels, the accu-
racy becomes to ascend. However, when reaching a certain
level, the convergence time begins to ascend which can be
caused by the increased computation complexity. Furthermore,
it indicates that the modest increasing on the number and size
of convolution kernels for CNN model can be conducive to the
better performance. The following simulation results in SD-
DCNs are reported according to the S5-based CNN structure.

B. Flow Completion Time Analysis in SD-DCNs

The objective of our scheme is to minimize the average
flow completion time of each TCP flow in comparison with
the shortest path first (SPF) algorithm and ECMP routing.
Fig. 5 compares the CDF of flow completion time using our
scheme with the CDF using the SPF and the ECMP algorithms
under three traffic patterns. where the x-axis represents the
completion time of TCP flows in seconds, y-axis shows
the cumulative percentage of TCP flows. For the one-to-
one traffic, 32 TCP flows are generated in the network. The
completion time of the flows using our scheme and the ECMP
is significantly shorter than using the SPF. The curves of our
scheme and ECMP almost overlap because the traffic load is
low with few flows. For the one-to-all traffic (96 flows) and
all-to-all traffic (192 flows), as the number of flow increases
and the window size changes, the network is more congested.
It can be seen that with our scheme, the CDF of FCT is closer
to the Y-axis than SPF and ECMP. This implies that more TCP
flows have shorter flow completion time.

Fig. 6 shows the performance for our scheme against the
SPF and the ECMP. The x-axis presents the three traffic
patterns simulated in the experiments and y-axis shows the
flow completion time. The performance of the SPF algorithm
generally degrades when the pattern varies from one-to-one
traffic to one-to-all traffic and then to all-to-all traffic. In
contrast, the performance of our scheme is better than the
SPF algorithm and reduces the FCT by up to 50% shorter than
the SPF algorithm. For the ECMP, as the load of the network
increases, the effect of our scheme is also apparent and reduces
FCT by up to 21%. The reason is that our scheme is designed
to minimize FCT by considering the network traffic variability
in different scenarios, while the SPF and the ECMP algorithm
ignores the issue on the quality of service.

Based on the above results in Fig 5-6, we may conclude
that the FCT performance of our scheme is superior to SPF
and ECMP, especially for the paths that have overloaded links.

V. CONCLUSION

In this paper, we propose a CNN-based routing scheme
for TCP applications in software-defined data center networks
(SD-DCNs). We first develop a flow-based minimum FCT
routing algorithm and apply the convolutional neural network
(CNN) to routing optimization in SD-DCNs. Based on the
algorithm, we build a virtual network simulator of the real
network to generate a dataset from low to high input traf-
fic. Finally, we train the CNN model based on the dataset
to predict the optimal flow path. This scheme can better
choose the paths’ combinations as network traffic changes.
We implemented simulation at three traffic patterns: one-to-
one, one-to-all and all-to-all. The simulation results show
that our proposed scheme outperforms the SPF algorithm and
ECMP by up to 50%, 21% respectively in terms of the flow



0 5 10 15 20 25 30 35 40 45 50

Flow Completion Time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Our Scheme

ECMP

SPF

(a) one-to-one traffic

0 5 10 15 20 25 30 35 40 45 50

Flow Completion Time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Our Scheme

ECMP

SPF

(b) one-to-all traffic

0 5 10 15 20 25 30 35 40 45 50

Flow Completion Time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Our Scheme

ECMP

SPF

(c) all-to-all traffic

Fig. 5: The CDF of FCT under different traffic patterns.

One-to-One Traffic One-to-All Traffic All-to-All Traffic

Traffic Patterns

0

5

10

15

20

25

30

35

40

A
v

er
ag

e 
F

C
T

 (
m

s)

Our Scheme

ECMP

SPF

Fig. 6: Performance comparison results.

completion time (FCT). More importantly, the scheme predicts
the path without prior knowledge of traffic input and provides
a practical solution to routing problems in real complex SD-
DCNs.

REFERENCES

[1] Ravi Teja Kamurthi, Shakti Raj Chopra, and Rahul Sharma. A bur-
geoning 6g technology and its cloud services. In 2022 International
Conference on Emerging Smart Computing and Informatics (ESCI),
pages 1–7, 2022.

[2] Edward Nepolo and Guy-Alain Lusilao Zodi. A predictive ECMP
routing protocol for fat-tree enabled data centre networks. In 2021 15th
International Conference on Ubiquitous Information Management and
Communication (IMCOM), pages 1–8, 2021.

[3] Deepshikha and Mayank Dave. A real-time application solution in data
center networking using SDN. In 2018 International Conference on
Inventive Research in Computing Applications (ICIRCA), pages 877–
881, 2018.

[4] Yuhua Xu, Zhe Sun, and Zhixin Sun. SDN-based architecture for big
data network. In 2017 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC), pages 513–
516, 2017.

[5] Yingying Cheng and Xiaohua Jia. NAMP: Network-aware multipathing
in software-defined data center networks. IEEE/ACM Transactions on
Networking, 28(2):846–859, 2020.

[6] M. Mellia and H. Zhang. TCP model for short lived flows. IEEE
Communications Letters, 6(2):85–87, 2002.

[7] Gan Luan. Estimating TCP flow completion time distributions. Journal
of Communications and Networks, 21(1):61–68, 2019.

[8] Raj P. Dhanya and V. S. Anitha. Implementation and performance
evaluation of load balanced routing in sdn based fat tree data center.
In 2023 6th International Conference on Information Systems and
Computer Networks (ISCON), pages 1–6, 2023.

[9] Weifei Zang, Zijin Jin, and Julong Lan. An SDN based fast rerouting
mechanism for elephant flows in DCN. In 2017 8th IEEE International
Conference on Software Engineering and Service Science (ICSESS),
pages 363–366, 2017.

[10] Fangyi Jiang, Yingjie Zhou, and Yu Chen. Mamed: Ml-assisted mini-
mum end-to-end delay routing in sdn-iot networks for iot monitoring.
In 2023 IEEE Wireless Communications and Networking Conference
(WCNC), pages 1–6, 2023.

[11] Marwa Kandil, Mohamad Khattar Awad, Eiman Mohammed Alotaibi,
and Reza Mohammadi. Q-learning and simulated annealing-based
routing for software-defined networks. In 2022 International Conference
on Computer and Applications (ICCA), pages 1–10, 2022.

[12] Y. Chen, Y. He, Z. Zhao, X. Liang, Q. Cui, and X. Tao. Demo: A
quagga-based ospf routing protocol with qos guarantees. In 2018 24th
Asia-Pacific Conference on Communications (APCC), pages 5–6, 2018.

[13] Shailender Kumar, Jitendra Kaswa, Lakshay Meena, and Mimansa
Porwal. Convolution neural network-based detection in software de-
fined networks. In 2022 2nd International Conference on Intelligent
Technologies (CONIT), pages 1–6, 2022.

[14] Zubair Md. Fadlullah, Fengxiao Tang, Bomin Mao, Jiajia Liu, and
Nei Kato. On intelligent traffic control for large-scale heterogeneous
networks: A value matrix-based deep learning approach. IEEE Commu-
nications Letters, 22(12):2479–2482, 2018.


