
A Computer Aided Design Tool for NISQ Logic
Synthesis

Albert B Dinkins V
Department of Electrical Engineering

University of South Florida
Tampa, USA

adinkins1@usf.edu

Austin Bristow
Department of Electrical Engineering

University of South Florida
Tampa, USA

bristow@usf.edu

Kwang-Cheng Chen
Department of Electrical Engineering

University of South Florida
Tampa, USA

kwangcheng@usf.edu

Abstract—Computed Aided Design (CAD) is essential to syn-
thesize noisy intermediate scale quantum (NISQ) information
and communication systems. The prevailing model for NISQ
systems is gate-based and uses logical components arranged into
a circuit to represent different quantum operations. A CAD Tool
for Quantum Logic is proposed to synthesize gate-based NISQ
circuits for computing, communication, or sensing by supplying
designers with parameterized versions of common quantum
algorithms as well as a design space for simulating photonics
hardware implementations. Available in a software package
called the CADTQL, designers can test their conventional and
optical quantum logic configurations and realize more efficient
designs.

Index Terms—CAD, Quantum Logic Synthesis, Quantum Op-
tics and Communications, NISQ

I. INTRODUCTION

Quantum logic synthesis plays a critical role in NISQ gate-
based quantum information systems for computing, communi-
cation, and sensing [1] [2] [9]. The successful construction of
physical quantum gates and the preservation of their effects is
important to the advancement of integrated quantum solutions
such as new algorithms, processors, or operating systems [3].
Quantum logic - a nonphysical representation for quantum
computations and algorithms - and subsequent synthesis serve
as a guide for scientists seeking highly efficient quantum
solutions with applications that span from communications
to cryptography or computer architectures [6]. With the help
of computer aided design (CAD) technology, we can create
a unified space for synthesizing quantum logic with design
capabilities fit to specific quantum physical implementations,
enabling the eventual construction of application specific quan-
tum devices [4].

This task of developing meaningful quantum algorithms
can be achieved through the refinement of current NISQ
methodologies [5]. Current methodologies for specific phys-
ical quantum implementations, including Strawberry Fields
(modeling photonic quantum configurations) [14], the IBM
Quantum Composer (modeled after semiconducting configu-
rations) [15], SQUANCH (modeling quantum networks and
channels) [16], and QuISP (simulating Quantum Internet) [17],
all exist to model individual design approaches to quantum
information systems. As current tools are limited to particular
implementations, an opportunity arises to provide quantum

Fig. 1. Sample Frame of The CAD Tool for Quantum Logic - a design space
for NISQ quantum logic synthesis

circuit designers with a more general implementation of
optical quantum computing (polarization, spatial, time, etc.)
and the ability to compare different physical quantum circuit
design choices. To respond to such a challenge, this paper
introduces the development of a quantum-assistive software,
called the “Computer Aided Design Tool for Quantum Logic”
(CADTQL), built to synthesize logical quantum circuitry and
simulate the execution of any quantum circuit configuration.

In order to fully describe the CADTQL, we outline (i) the
different capabilities of the tool (i.e., simulation and parame-
terization) and their rationale, (ii) the development approach
for these capabilities, (iii) actual methods and challenges dur-
ing development, (iv) results and computational experiments
using the tool, and (v) the importance of the CAD tool to
the future of physical quantum circuit-based devices used in
computing, communications, and sensing.

II. DESIGNING THE CADTQL

There are two main components of the CADTQL - the
“Quantum Conventional Logic Design Space” (QCLDS) and
the “Photonic Logical Design Space” (PLDS). The develop-
ment of the QCLDS was conducted with the intention of
building a framework for quantum logic in a manner similar
to IBM’s Quantum Composer such that, when the time for
application specific design capabilities to be introduced to the
tool (like the PLDS), the techniques and features can be easily
replicated and expanded. The PLDS, on the other hand, uses



optical hardware configurations and specific physical inputs
like angles of rotation and light wavelength to model quantum
circuitry. In quantum computing, it is important to be able
to model a system around its physical implementation as
each method comes with its own unique obstacles - nonlinear
optical configurations struggle to support controlled rotations,
superconducting processors require near 0K conditions, etc.
[7] [8] [12]. So, we design a more general CAD tool which
allows you to simulate quantum circuits dependent on physical
parameters. Additionally, having a CAD tool specifically for
photonics, as opposed to other implementations, is important
for two main reasons: first, communications systems world-
wide depend on the transmission of light at different wave-
lengths, and second, generating/manipulating light is relatively
inexpensive and accomplished at room temperature [18] [19]
[20]. Through the availability of the PLDS, we aim to impact
the design of quantum communications and sensing systems,
which already greatly depend on photonics [16] [17].

Together, the QCLDS and PLDS provide interested parties
with the opportunity to (i) build and test complicated quan-
tum logic using an effective and designer-friendly interface,
(ii) execute parameterized versions of well-known quantum
algorithms (developed ”in-house” to support a more simplistic
and educational method for using quantum algorithms), and
(iii) implement custom logical designs for physical quantum
circuitry in “design spaces”. This paper introduces a version of
the CADTQL that lays the groundwork for a holistic CAD tool
capable of synthesizing realistic quantum application specific
designs that are important to wireless communications im-
plementations (i.e., quantum inner and outer communications
receivers, remove quantum sensing devices, etc.) through the
ability to integrate conventional logic synthesis with their
hardware equivalents across different physical design choices,
like photonics.

A. QCLDS Design Philosophies

One of the core design aspects of the QCLDS is the
leveraging of the quantum computing devices harbored by
IBM through a Python-based software installation of their
BasicAER simulator captured in the Qiskit Software Develop-
ment Kit (SDK). This SDK is capable of simulating quantum
computations modeled after physical quantum computers with
generally low error rates [10]. To follow the Python basis of
Qiskit, the user interface for the tool was also developed in
Python using the Tkinter UI library. With a front end written
in Python, the ability to easily integrate back-end Qiskit calls
with the TKinter UI made for a fluid software development
process entirely in Python.

Python’s functionality scheme further promotes the ability
to parameterize common quantum algorithms through function
calls and file write statements. Qiskit already has several
parameterized versions of algorithms available, particularly
the Deustch-Josza and Grover’s algorithms, but their input
parameters can become incredibly complex and some are
even depreciated, making for a difficult interaction process for
designers. The IBM Quantum Composer, which also leverages

Fig. 2. Design Map for the CADTQL

Qiskit, lacks the ability to manipulate Qiskit code alongside
the composer’s diagramming. It also does not provide users
with the ability to easily integrate the algorithms already of-
fered by Qiskit. If a designer wants to implement an algorithm
into the Quantum Composer, they must learn the syntax and
also understand all of the parameters, which may or may not
be depreciated. As a result, all algorithms developed for the
CADTQL - no matter whether the algorithm already existed in
Qiskit or not - were redefined from the ground up in an effort
to allow seamless integration into circuit design, to promote an
algorithm driven design space, and to also build the framework
for future design spaces.

B. PLDS Design Philosophies

Wireless quantum communication systems are primarily
implemented through optics and the PLDS offers a design
space to work directly with physical devices that are vital to
quantum optics. Optical implementations of quantum commu-
nications systems introduce several non-trivial problems which
are often neglected in logic synthesis. First, realistic optical
implementations use non-deterministic single photon sources,
imperfect optical components, and single photon detectors
with <100% quantum efficiency. This can result in loss or

Fig. 3. Challenges in Optical Quantum Communications Systems

small angle error on the Bloch sphere. Second, quantum
channels can introduce unitary and non-unitary errors that
must be accounted for in order to have an effective communi-
cation system. Finally, the practical implementation for 2-qubit
optical gates are difficult to implement as photons react poorly



to interactions with other photons and their environment. By
integrating physical device parameters into the PLDS, we can
more appropriately and exactly address the cause-and-effect
of the above problems through iterative designing, simulating
these designs, and synthesizing results to come up with a next
best implementation.

III. DEVELOPMENT OF THE CADTQL

A. Foundational Components

The core of the application essentially operates as a com-
piler of designer inputs in order to present (i) a circuit diagram
representing the code-based implementation provided by the
designer (a diagram-to-code based approach is offered in
another section of the application, accessed from the file
menu), (ii) a results histogram in the presence of measurement,
again, as dictated by the designer, and (iii) the ability to
view underlying implementations of parameterized algorithms
presented as a “black box” or “oracle”. To present these three
things, the application relies on designer input to a large white
text box, located below entry fields for setting the number of
qubits in the circuit being designed, the name of the file the
designer wants to save their results to, and the name of the
program file that will be sent to IBM’s simulator for execution.

B. Developing the QCLDS and Parameterized Algorithms

In the QCLDS’s driver file, various python functions are
written to capture (i) the algorithm a designer wants to use,
(ii) how large the algorithm needs to be, (iii) which qubits the
algorithm needs to be applied to, and (iv) any other details that
may be important in the construction of the algorithm. For all
algorithms parameterized as part of this research, the main
method for configuring these algorithms came in the form of
Python file write statements that would explicitly define the
underlying algorithm for the quantum simulator to process.
From a front-end perspective, every algorithm is listed within
a central menu panel, allowing users to choose any algorithm
they’d like to with the click of a button.

Fig. 4. QFT Circuit Diagram

Two important algorithms parameterized in the QCLDS
are the Quantum Fourier Transform Algorithm (QFT) and its
inverse (iQFT). These algorithms are subroutines in notable
quantum algorithms like Shor’s Algorithm and the Quantum
Phase Estimation Algorithm. Shor’s algorithm, which uses the
QFT and Inverse QFT as subroutines in its factorization of
prime numbers, shows great promise in its ability to break
public-key encryption schemes while Phase Estimation plays
an important role in communications and error correction.

When constructing the parameterized Quantum Fourier
Transform, we must explicitly define what the circuit should
logically accomplish and then implement the correct unitary
transformations in terms of their logical Qiskit implemen-
tation. Accordingly, the quantum Fourier Transform maps a
vector in the complex number space to another vector in the
complex number space according to the formula:

|x1x2...xn⟩
QFT−−→ 1

2n/2

∑2n−1
y=1 ei2π·x·y/2

n |y1y2...yn⟩

where n is the total number of input qubits, and x = x1, x2,
... xn and y = y1, y2, ... yn are the binary representations of the
input and output qubits, respectively [13]. This formula results
in the circuit diagram in Figure 4 where the boxes labeled
Rk with the qubit connected via the vertical line represents a
controlled-phase gate by the matrix:

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 eiπ2/2
k


Two subroutines were constructed for the parameterized

QFT: one function was written to recursively apply the
Hadamard gates/controlled rotations (called “qft rotations()”)
and another was written for swapping the qubit registers
(called “swap registers()”) as is convention when using Qiskit.
The recursive algorithm takes a string of n qubits (can be
positioned anywhere in the circuit) and, starting at the nth

qubit of the subroutine, applies a Hadamard gate to this qubit
and n-1 controlled rotations. The nth qubit is the control and
the rotations are given by π/2x where x=1...n−1. This process
recursively decrements through the registers until reaching the
final qubit of the algorithm, upon which only a Hadamard gate
needs be applied and the circuit is returned. The rotations for
the Inverse Quantum Fourier Transform was defined similarly
to match the Inverse Quantum Fourier Transform formula.

After combining the rotations subroutine with the swap
registers function, the installation of the parameterized QFT
and iQFT functions is completed. When any function is called
in the code entry box (as seen in Figure 5), the application will
send the exact parameterized function definitions to a quantum
computer to be simulated. To comprehend the results the quan-
tum computer returns, a series of UI elements (Figure 5) help
to fully illustrate what exactly the algorithm is accomplishing
and aide in further synthesis.

Beyond the Quantum Fourier Transform, a few other quan-
tum computing solutions exist in the tool. Grover’s Algo-
rithm, which provides a quantum solution to the unstruc-
tured/unsorted search problem in a quadratic speedup over
classical algorithms, essentially searches for the quantum
states marked with a negative phase by a quantum oracle
and returns the marked state after measuring all qubits post
algorithm processing [2]. In terms of parameterizing Grover’s
Algorithm, there are three components to be constructed: the
Hadamard Transform to all n qubits in the algorithm, an



Fig. 5. Creation of the Inverse and Discrete Quantum Fourier Transform in
the CADTQL

oracle dictating which state represents the item being searched
for, and a diffuser that will cause the circuit’s final state
to represent the marked state. The oracle’s details are left
up to the designer to implement as this is how the state
to be searched for is initialized. The final component, the
diffuser, is built to diffuse a Grover’s Algorithm circuit of
any size, accomplishing the core parameterization aspect of
this algorithm.

Another algorithm included in the tool that is dependent
on additional designer input is the Deutsch-Jozsa algorithm.
Beyond the automatic application of Hadamard Transform
to the first n qubits and the preparation of the ancilla bit,
the algorithm also preps a balanced or constant oracle based
off user input. Finally, a parameterized quantum full adder
algorithm was also included in the system as to serve as the
arithmetic module for potential quantum chip designs.

Fig. 6. Sample frame depicting the creation of the parameterized Quantum
Full Adder, Grover, and Deutsch-Josza Algorithms all configured alongside
each other and applied to different qubits - exemplifying the ability to truly
apply algorithms in any arrangement

C. Developing the Photonic Logical Design Space

While parameterization is certainly a foundational aspect of
the CADTQL, the ability to construct logical implementations
of custom physical circuit configurations and run them against
a quantum simulation remains a challenge. We first propose
a completely new visualization for designing quantum optical
circuits while also providing realistic simulations. The PLDS
mimics the the basic structure of IBM’s Quantum Composer

but for optics: visual representations of the logical compo-
nents, a drag and drop system for the circuit visuals, and a
grid system for configuring the circuit. This design space will
permit novel developments in designing application specific
quantum devices based in photonics.

A quantum computation first requires the encoding of
classical or binary information into qubits as a preprocessing
step to any sort of data manipulation [1] [7] [11]. Classical
data is often encoded into the physical properties of the qubit
and can be manipulated by a series of operations that act
on the qubits’ physical properties to process the encoded
classical information. The PLDS operates on free space photon
qubits where horizontally polarized photons are considered to
be the quantum logical representation of a binary “0” and
vertically polarized photons are considered to be a “1” [7]
[8]. The photons used for PLDS computations are delivered
from a laser capable of operating at varying wavelengths,
subject to the designers choice. This laser, coupled with a
laser attenuator and lens, would act as the register initialization
for the quantum circuit. From there, the free space light can
be processed by quarter-wave plates, half-wave plates, and
electro-optic modulators to create and process quantum states,
all before measurement in the form of a particle beam splitter
and corresponding detectors [7] [8].

Fig. 7. Circuit layout and code conversion panels specific to the Photonic
Logical Design Space

The PLDS is built to support any circuit size from 1x2
to 9x17. Components of the circuit that depend on physi-
cal parameters were given data structures to store necessary
information related to the circuit piece. For example, lasers
can be set to any wavelength, wave plates can be rotated to
any degree, laser drivers have a repetition frequency, etc. As
photonic gates and their parameters are dragged and dropped
into the circuit grid, a matrix representation of the circuit
is compiled such that each cell in the matrix corresponds
to an OpenQuasm-like language independently developed in
this research specifically for photonic set ups. For example,
a laser emitting 750 nm light would find its entry in the
matrix to be “LH[pos, 750]” where “pos” is the qubit register
position initiated by this laser head. After creating similar
parameterizations for other components, the system supports



a fully customizable designs for physical photonic quantum
circuits.

IV. USING THE CADTQL

Having covered the implementation and capabilities of the
CADTQL, this section of the paper seeks to demonstrate the
application’s use process through a series of examples.

A. Conventional Logical Design

First we’ll begin with the implementation process for con-
figuring the 3 parameterized algorithms depicted in Figure 6.
First the circuit needs to have its registers initialized: this is
accomplished by entering a numeric value in the text entry
labeled “Enter # of Qubits”. Following the order in Figure 6,
a designer can configure the quantum fuller adder by applying
it to qubits 0-3 (resulting in the addition of qubits 0 and 2
with the result stored in qubit 3 and the carry out in qubit
1). If a designer adds code to apply an X gate to qubit 0 and
an identity gate to qubit 2 before the QFA algorithm, they
have created a quantum logical representation of a quantum
algorithm that computes the addition of “1” and “0”. By
executing the circuit after applying measurement to qubit 1
for the carry out and qubit 3 for the sum, the designer is
presented with a histogram containing the quantum solution
for adding the basis quantum state found in qubit 0 to its
complement found in qubit 2. Compiling and executing the
circuit construction thus far results in the frame captured in
Figure 8.

Fig. 8. QFA implementation before adding more algorithms

Following the same steps and prescribing parameters as
necessary, we can create an extended circuit that makes use
of other algorithms by continuing to append code to the main
code entry text box. We can add the Deustch Jozsa to qubits
4-6 and automatically configure a balanced oracle by sending
the “B” character to the last argument in the DJ function.
Due to the fact that the last qubit of every Deustch Jozsa
implementation is an ancilla bit, only qubits 4 and 5 need
be measured to obtain the algorithm’s result. With Grover’s
algorithm applied to qubits 7 and 8, we can implement our
own custom oracle capable of marking the quantum state 11
(as opposed to 01, 01, or 00). This oracle is realized by a
controlled z gate where qubit 7 is the control and qubit 8 is

the target. Measurement of qubits 7 and 8 reveals the “marked
state”. The final cumulative quantum circuit is depicted in
Figure 9.

Fig. 9. Result of running the three parameterized algorithms together. Note
the classical result in the bottom left of the image is the reversed order of the
outcome we expect - this is a qiskit convention

To obtain the histogram, we must send each of the measure-
ments to classical registers that correspond to our classical
encoding of information. The results from each of the 6
measurements we conduct (2 for the QFA on qubits 0 and
3, 2 for the DJ on qubits 4 and 5, and, finally, 2 on Grover’s
Algorithm for qubits 7 and 8) can be distributed to 6 classical
bits that construct our results histogram. If we distribute the
results across the classical registers in the order presented (q0-
c1, q3-c2, q4-c3, q5-c4, q7-c5, q8-c6), we have a classical
binary string that represents what the circuit returns. The logic
of the circuit is found in the following: the binary addition of
2 bits where one is “0” and the other is “1” results in a sum
of “1” and a carry out of “0”, making the first two expected
outcomes of the circuit to always be “10”. The Deutsch-Jozsa
algorithm should always return a string of 1s for a balanced
function, so the next two expected outcomes are “11”. Finally,
since we marked the 11 state for Grover’s Algorithm, we
expect “11” for the final two outcomes. Therefore, for every
run of this circuit - for all 1024 executions - we expect a
results histogram with 1024 counts of 101111; we find this to
be the case as displayed in Figure 9.

B. Photonic Logical Design

The Photonic Logical Design Space, like the QCLDS, is
also capable of having its configurations simulated, allowing
users to evaluate their designs. The device diagrams used
within a particular circuit design are compiled into a list of
instructions specific to the implementation involved before
being translated into Qiskit to be ran. The circuit in Figure
7 depicts the physical optical implementation of a Hadamard
gate and measurement, which can be ran against IBM’s
simulators to return the physical implementation’s expected
results.

When a designer opens the PLDS and sets the size of the
circuit (see that Figure 7 contains a 2x9 circuit where only
the first row is used), they can begin dragging and dropping
icons into any space in the grid they’d like. Once done, the
designer can hit a “compile” button that will take all the



diagrams in the grid and convert them to custom code (e.g.,
“HWP[2]” or “POL[3]”). In the future, it is possible that these
custom code commands can be used as input to a simulator
built specific to the physical device as opposed to leveraging
Qiskit’s BasicAer Simulator. With this concept implemented,
designers would notice different results for 750 nm vs 850
nm light or differences based on attenuation - these are things
most logic simulators do not currently have a way to account
for.

If a detector (“DET[...]”) is found in the grid, the option to
“Run” the circuit is presented to the designer. When pressed, a
pop-up window illustrates the custom code to qiskit translation
while also presenting the designer with the option to execute
their newly crafted qiskit code. Upon clicking “execute” the
results for running the Qiskit code are presented. The Qiskit
code in the “Qiskit Code Equivalent” box is completely cus-
tomizable and malleable - it even runs the same parameterized
algorithms available in the QCLDS. This means we can test
the “Error” function (also installed as a button in the QCLDS
UI) on the just-implemented physical set up, creating an even
more realistic model (see Figure 10 where the “Error” function
is added to the “Qiskit Code Equivalent” entry box).

Fig. 10. Manipulating Qiskit to introduce realistic error models for a physical
photonic implementation

With a design space that is capable of simulating specific
logical configurations of physical devices, computing, commu-
nications, and sensing researchers can investigate the results
of their physical implementations, test for where error may
corrupt the computation, and evaluate how their circuit can be
improved all in one centralized software package.

V. CONCLUSION

This paper has discussed the design philosophy behind, and
the capabilities of, a CAD tool for quantum logic synthesis.
The CADTQL offers design spaces for synthesizing quantum
logic and illustrating the results of quantum computing, com-
munications, and sensing circuits. The tool offers a simple
interface for configuring quantum circuitry at the gate level,
as gate-based quantum computing is the typical model for
NISQ solutions today. The CADTQL serves to further push
quantum circuit construction toward more algorithm intensive

and application specific designs. Designers can create any
circuit configuration they desire, with parameterized versions
of famous quantum algorithms made readily available in the
form of custom-built function calls. Designers can execute
the circuits on IBM supported quantum simulators and view
results with ease. We present these features as a means
of enabling more complex quantum systems like quantum
processors or communications sub-systems.

In subsequent research, we plan to incorporate additional
optical encodings into the Photonic Logical Design Space,
in addition to other non-optical encoding possibilities in new
design spaces. This will enable the generation and simulation
of tailored setups for any specific encoding, thereby enhancing
the design of all types of physical quantum circuits.

REFERENCES

[1] P. Kaye, R. Laflamme, and M. Mosca, An Introduction to Quantum
Computing, Oxford University Press, 2007.

[2] J. D. Hidary, Quantum Computing: An Applied Approach, Springer, 2021.
[3] K. Bertels, A. Sarkar, A.A. Mouedenne, T. Hubregtsen, A. Yadav, A.

Krol, and I. Ashraf, “Quantum Computer Architecture: Towards Full-
Stack Quantum Accelerators,” arXiv:1903.09575 [quant-ph], Sep. 2019.

[4] S. Y. Kuo, Y. C. Jiang, Y. H. Chou, S. Y. Kuo, and S. Y. Kung,
“Quantum Computer-Aided Design Automation,” IEEE Nanotechnology
Magazine,vol. 17, no. 2, pp. 15-25, 2023.

[5] F. Leymann and B. Johanna, “The bitter truth about gate-based quantum
algorithms in the NISQ era,” Quantum Science and Technology,vol. 5,
no. 4, 2020.

[6] J. Lee, Y. Chung, J. Kim, and S. Lee, “A Practical Method of Constructing
Quantum Combinational Logic Circuits,” arXiv:quant-ph/9911053, Nov.
1999.

[7] C. Adami amd N. J. Cerf, “Quantum Computation With Linear Optics,”
arXiv:quant-ph/9806048, Jun. 1998.

[8] C. Adami, N. J. Cerf, and P. G. Kwiat, “Optical Simulation of Quantum
Logic,” arXiv:quant-ph/9706022, Jun. 1997.

[9] V. Shende, S. Bullock, and I. Markov. “Synthesis of Quantum Logic
Circuits,” arXiv:quant-ph/0406176, Apr. 2006.

[10] “Qiskit Documentation,” qiskit.org. https:// qiskit.org/documentation.
(accessed Sept 15, 2023).

[11] J. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for
scalable quantum information processing,” arXiv:2210.11830 [quant-ph],
Oct. 2022.

[12] T. Roy, Z. Li, E. Kapit, and D. I. Schuster, “Realization of two-qutrit
quantum algorithms on a programmable superconducting processor,”
arXiv:2211.06523 [quant-ph], Nov. 2022.

[13] Y. Shi and E. Waks, “Quantum Fourier transform on photonic qubits
using cavity QED,” arXiv:2112.00658, Jul. 2022.

[14] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and C. Weed-
brook, “Strawberry Fields: A Software Platform for Photonic Quantum
Computing,” arXiv:1804.03159v2 [quant-ph], Mar. 2019.

[15] ”Composer User Guide,” ibm.com. https://learning.quantum-computing.
ibm.com/tutorial/composer-user-guide. (accessed Sept 15, 2023).

[16] B. Bartlett, “A Distributed Simulation Framework for Quantum Net-
works and Channels,” arXiv: 1808.07047 [quant-ph], Aug. 2018.

[17] R. Satoh, M. Hajdušek, N. Benchasattabuse, S. Nagayama, K. Teramoto,
T. Matsuo, S. A. Metwalli, T. Satoh, S. Suzuki, and R. Van Meter, “QuISP:
a Quantum Internet Simulation Package,” arXiv:2112.07093 [quant-ph],
Dec. 2021.

[18] J.E. Bourassa, R.N. Alexander, M. Vasmer, A. Patil, I. Tzitrin, T.
Matsuura, D. Su, B.Q. Baragiola, S. Guha, G. Dauphinais, and K.K.
Sabapathy, “Blueprint for a scalable photonic fault-tolerant quantum
computer,” Quantum, vol. 5, p. 392, 2021.

[19] J.W.Z. Lau, K.H. Lim, H. Shrotriya, and L.C. Kwek, “NISQ computing:
where are we and where do we go?,” AAPPS Bulletin, vol. 32, no. 1, p.
27, 2022.

[20] J.E. Bourassa, R.N. Alexander, M. Vasmer, A. Patil, I. Tzitrin, T.
Matsuura, D. Su, B.Q. Baragiola, S. Guha, G. Dauphinais, and K.K.
Sabapathy, “Blueprint for a scalable photonic fault-tolerant quantum
computer,” Quantum, vol. 5, p. 392, 2021.


