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 Platform
 Hardware: Scalable, heterogeneous, distributed
 Accelerators: Efficiency boost by FPGA and ASIC technology
 Toolchain: Optimizing Deep Learning for IoT

 Use cases
 Industrial IoT
 Automotive
 Smart Home

 Open call
 At project mid-term 
 Early use and evaluation of VEDLIoT technology

Very Efficient Deep Learning for IoT – 
VEDLIoT

 Call: H2020-ICT2020-1
 Topic: ICT-56-2020 Next Generation Internet of Things
 Duration: 1. November 2020 – 31. Oktober 2023
 Coordinator: Bielefeld University (Germany)
 Overall budget: 7 996 646.25 € 
 Consortium: 12 partners from 4 EU countries 

(Germany, Poland, Portugal and Sweden) and one 
associated country (Switzerland). 

More info: 
Þ https://www.vedliot.eu/ 
Þ https://twitter.com/VEDLIoT 
Þ https://www.linkedin.com/company/vedliot/ 

https://www.vedliot.eu/
https://twitter.com/VEDLIoT
https://www.linkedin.com/company/vedliot/
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 Bielefeld University (UNIBI) - Coordinator
 Christmann (CHR)
 University of Osnabrück (UOS)
 Siemens (SIEMENS)
 University of Neuchâtel (UNINE)
 University of Lisbon (FC.ID)
 Chalmers (CHALMERS)
 University of Gothenburg (UGOT)
 RISE (RISE)
 EmbeDL (EMBEDL)
 Veoneer (VEONEER)
 Antmicro (ANT)

Partners
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Big Picture
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VEDLIoT Hardware Platform

 Heterogeneous, modular, scalable microserver system
 Supporting the full spectrum of IoT from embedded over the edge towards the cloud
 Different technology concepts for improving 
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RECS Architecture (RECS|BOX)
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t.RECSt.RECS Edge Server 
 Optimized platform for 

local / edge applications
 Provide interfaces for

 Video
 Camera
 Peripheral input (USB)

 Combine FPGA and 
GPU acceleration

 Compact dimensions 
1 RU, E-ATX form factor
(2 RU/ 3 RU for special cases)

RECS Architecture (t.RECS)
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uRECS

u.RECS AIoT Server
 Supports ML acceleration

 FPGA
 ASIC

 Communication interfaces
 Wired (CAN, Ethernet, CSI)
 Wireless (WLAN, LoRa, 5G)

 Sensors
 Camera
 Environment (Temp./Hum.)
 Housekeeping

 Embedded Device
(~ 20x20x6 cm)

RECS Architecture (u.RECS)
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Microserver overview
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Peak performance values of specialized accelerators, 
provided by the vendors (precisions varying from INT8 
to FP32)

Peak Performance of DL Accelerators
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Flexible Accelerators for Deep Learning

DL 
Model

DL 
Model

CPU, GPU-SoC, 
ML-SoC

FPGA-SoC

 End of Moore’s law & dark silicon
 => Domain Specific Architectures (DSA)

 Efficient, flexible, scalable accelerators 
for the compute continuum

 Algotecture 
 Optimized DL algorithms
 Optimized toolchain 
 Optimized computer architecture

Heterogeneous DL 
Accelerator

Algotecture/
Co-Designed DL 
Accelerator

Compiler

Co-Design
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VEDLIoT‘s Deep Learning Toolchain

• Image 
Classification

• Object Detection

• Semantic 
Segmentation

• Instance 
Segmentation

• Extractive 
Question 
Answering

Model Zoo Optimization 
Engine

Compilers & 
Runtime APIs

Heterogeneous 
Hardware 
Platforms
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▪Focus on collision detection/avoidance scenario

▪Improve performance/cost ratio – AI processing hardware 
distributed over the entire chain

Use case: Automotive

Challenge: 
Distribution 

of work
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▪Control applications need DL-based condition classification 
▪On the edge device for low power consumption

▪Suggestions for control and maintenance

▪DL methods on all communication layers
▪DL in a distributed architecture

▪Dynamically configured systems

▪Sensored testbench with 2 motors
▪Acceleration, Magnetic field, Temperature,

IR-Cam (temperature), Current-Sensors, Torque

Use case: Industrial IoT – drive condition classification

▪On / Off detection without 
motor current or voltage

▪Cooling fault detection
▪Bearing fault detection

Challenge: 
Low-power / 

Efficiency
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Use case: Industrial IoT – Arc detection

▪AI based pattern recognition for different local sensor data 
▪ current, magnetic field, vibration, temperature, low resolution infrared picture

▪Safety critical nature 
▪ response time should be <10ms

▪ AI based or AI supported decision made by the sensor node itself or by a local part of the sensor 
network

Challenge: 
Accuracy
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▪Increase safety, health and well being of residents – acceleration of 
AI methods for demand-oriented user-home interaction

▪Smart Mirror as central user interface
▪Own mirror image can be seen normally

▪Intuitive control over gesture and voice

▪Shows personalized information

▪Data privacy as the highest priority
▪Edge computation of many neural networks

Use case: Smart Home / Assisted Living
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▪Face recognition
▪Mobilenet SSD trained on WIDERFACE dataset

▪Object detection 
▪YoloV3, Efficient-Net, yoloV4-tiny

▪Gesture detection
▪YoloV4-tiny with 3 Yolo layers (usually: 2 layers)

▪Speech recognition 
▪Mozilla DeepSpeech

▪AI Art: Style-Gan trained on works of arts

▪Collect usage data in situation memory

Use case: Smart Mirror – Neural Networks

Challenge: 
Data privacy, 

Efficiency
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Thank you for your attention.

Contact
Jens Hagemeyer, Carola Haumann
Bielefeld University, Germany
chaumann@cor-lab.uni-bielefeld.de
jhagemey@cit-ec.uni-bielefeld.de
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Benchmark performance of DL accelerators

 Comparison based on currently available architectures
 VEDLIoT will include new specialized accelerators
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Benchmark performance of DL accelerators
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Benchmark performance of DL accelerators

ResNet50

2 4 8 16 32 64 128
10

100

1000

10000

INT8 FP16 FP32

Power [Watt]

P
e

rf
o

rm
a

n
ce

 [
G

O
P

S
]



23

2 20
10

100

1000

10000

INT8 FP16 FP32

Power [Watt]

P
e

rf
o

rm
a

n
ce

 [
G

O
P

S
]

Benchmark performance of DL accelerators

MobileNetV3


