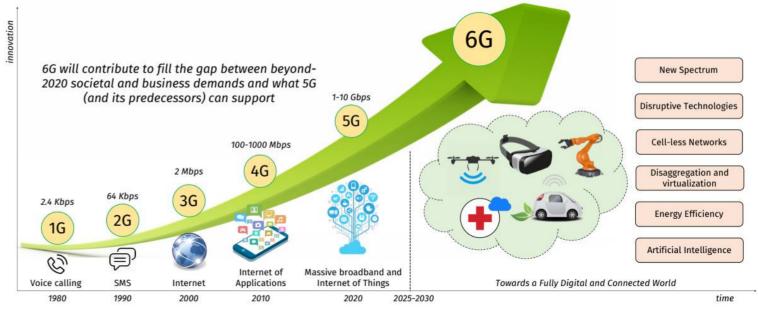
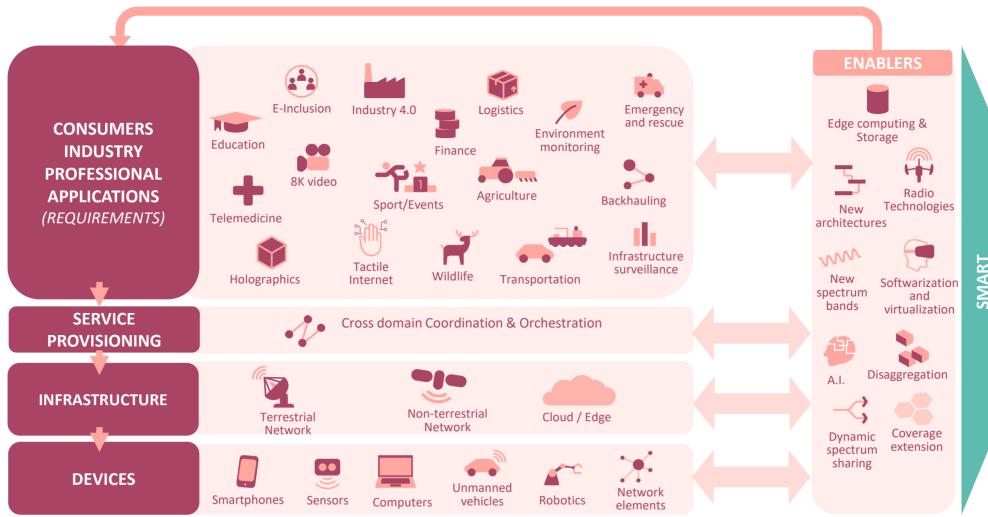
Non-terrestrial Networks (NTN): Boosting 6G from the Sky

CONASENSE 2021 Symposium 04-05 October 2021


Speaker: Tomaso de Cola

6G: Vision and Services


- B5G and 6G are expected to bring substantial evolution of the architecture and services envisioned for 5G:
 - Deep use of ML/AI concepts
 - New frequency bands (i.e. THz+)
 - Energy efficiency
 - Full system softwarisation
 - Edge computing capabilities on demand
- New services will be enabled:
 - AR/VR/MR
 - Holographic telepresence
 - E-health with haptic applications
 - Pervasive connectivity
 - Unmanned mobility

from M. Giordani *et al.*, "Toward 6G Networks: Use Cases and Technologies," in IEEE Communications Magazine, vol. 58, no. 3, pp. 55-61, March 2020 (with IEEE courtesy)

6G Ecosystem

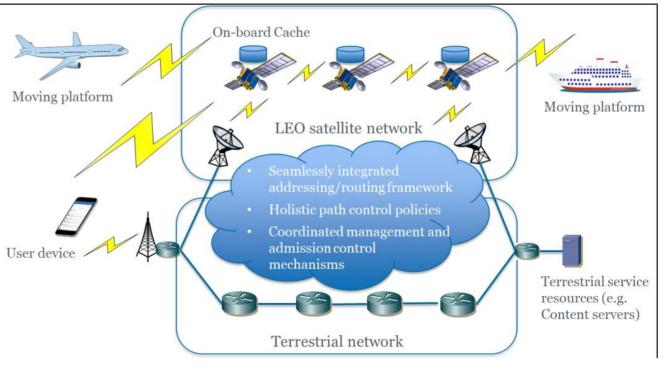
CONNECTIV

6G Enablers and Technology Areas

Technological Areas Indicative list of promising research areas ubiquitous availability Integrated fixed mobile architecture Satellite communications infinite network Spectrum re-farming and Reutilization mmWave. Terahertz. VLC communications capacity Satellite communications Ultra-massive MIMO Flexible capacity scaling Throughput Ultra-massive MIMO Enhanced modulation and coding Optical wireless integration Ultra-low e2e latency Media access control Edge/fog computing Software defined security Security Network wide security Slice-specific and convergence on common software defined patterns Distributed trust systems **Energy efficiency** extended bandwidth adaptation improved RF Massive IoT Service Scalable management of massive deployment Distributed autonomous and cooperative computing management

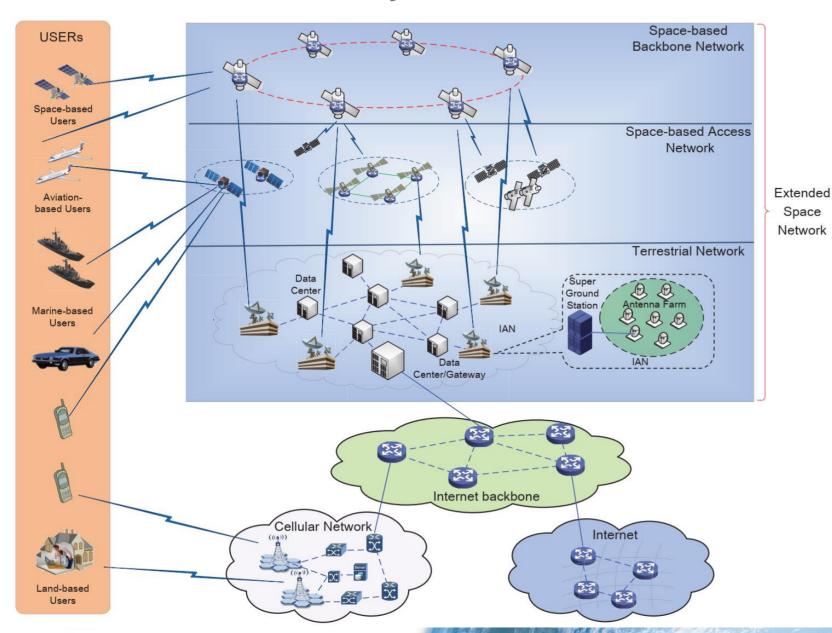
Real-Time Zero-Touch Service High Performance Distributed AI/ML Analytics Orchestration Computing

Fnablers


NTN key contributions

NTN key enabler see NB-IoT in 3GPP

Role of satellite in B5G/6G

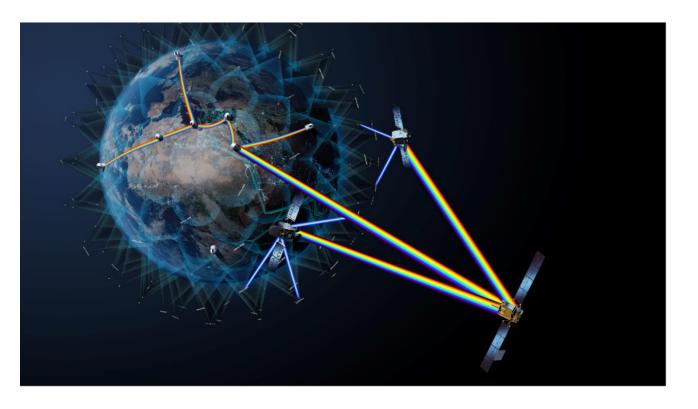

- Satellite will certainly be pivotal to the effective deployment of B5G/6G technologies, in order to:
 - Guarantee ubiquitous coverage with limited infrastructure
 - Exploit effective multicast functionalities for data distribution
 - "connecting the unconnected"
 - Easily push content to the edge for quasi-zero latency perception
- Explosion of LEO satellite market can certainly further revamp the role of satellite in the B5G/6G ecosystem:
 - Reduced latency
 - Capability of onboard storage
 - Inherent edge computing capabilities

From ITU Technical Report, "Representative use cases and key network" Focus Group on Technologies for Network 2030 (FG NET-2030) FG NET-2030 Sub-G1 (with ITU courtesy)

RESEARCH AREAS	RATIONALE AND IMPACTS
SYSTEM ARCHITECTURE: a single access network	 Full integration of T and NT, and of hierarchical layers Softwarization, Virtualization, and Disaggregation Processing and communication in the sky (Inter-node links) - Edge computing and storage
CONSTELLATIONS: hierarchical design	 Hierarchical constellations: from single (layers) to multiple orbits (layers) Incomplete constellations Nodes platooning
RESOURCE OPTIMIZATION: infrastructure as a resource	 Beyond the bandwidth, time, power, and space concepts: infrastructure as a resource Infrastructure reconfiguration: a network of networks Autonomous and intelligent Predictive optimization
DYNAMIC SPECTRUM MANAGEMENT coexistence and sharing	 Coexistence and Sharing: inter-segment (T & NT) and inter-layer New spectrum (THz and Optical): user/feeder/inter-node Spectrum sensing, predictive (see also AI)
BEAMLESS COMMUNICATIONS: user-centric coverage	 Beyond beam-centric: user-centric beamless communications Dynamic creation of communication links that follow the users MIMO and beam forming
UNIFIED ACCESS NETWORK DESIGN: flexibility and adaptability	 3GPP waveform designed for T/NT channels: Doppler/Delay/vertical handover New numerologies for flexibility and adaptability Quantum based communication for security
ARTIFICIAL INTELLIGENCE: exploitation of NT dynamics	 System Complexity management, including security Network predictive configuration and Predictive maintenance New physical layers, medium access layer, etc. approaches
PROPAGATION CHANNELS & ANTENNAS: beyond large scale arrays	 Higher frequency bands (Q/V, W,) & Wavelength (including optical) Propagation channel characterization Beamless communications Large scale antenna arrays, Distributed arrays (node cooperation)
COMPONENTS: developing the supporting technologies	 Antenna, Amplifiers THz & Optical devices (Rx & Tx)

NTN as enabler for 3D systems

Multidimensional Multi-layered Unified


H. Yao, L. Wang, X. Wang, Z. Lu and Y. Liu, "The Space-Terrestrial Integrated Network: An Overview," in IEEE Communications Magazine, vol. 56, no. 9, pp. 178-185, Sept. 2018.

Optical links for global NTN connectivity?

- Global connectivity
 - Space communications network as an extension of the ground network
 - LEO, GEO satellite communications: downlinks, feeder-links...
 - Fiber-coupling is essential for using fiber based-components
 - Needed when targeting ~+10Gbps
 - It enables pre-amplification, coherent communications, wavelength division multiplexing...
 - Availability is key in offering competitive services
 - Clouds: ground network of optical ground stations (OGS)
 - Turbulence: phase corrections
 - Adaptive optics:
 - Research on alternative approaches
- Technology demonstration
 - Optical free-space communications testbed at DLR
 - 13.16 Tbit/s with 16QAM in 2017 together with ADVA

Optical links for global NTN connectivity?

Conclusions

- 6G will introduce further technology evolution with respect to 5G with new technologies and unprecedented QoS/QoE requirements
- Terrestrial infrastructure alone will not suffice to meet all envisioned requirements:
 - Technology heterogeneity and convergence will be the clue to meet all new use cases from civil society and Industry 4.0
 - Role of NTN pivotal to achieve all the planned connectivity objectives and allow for more sustainable communication models
- NTN and TN expected to symbiotically and interchangeably live in the 6G body
- Evolution of NTN in the form of new systems and thereof components (e.g., optical link technology) will be the key factor to enable more NTN-oriented digital connectivity agenda of industry and governments

Take-home Message ©

Thank you for the attention!

For any questions please contact me at: tomaso.decola@dlr.de

