

Challenges of machine learning in eVTOL aircraft systems reliability and safety

by Marcos Salvador M. Sc. student Polytechnique Montréal / Aerospace RAMS engineer "It is broadly defined as a spectrum of new aviation capabilities serving densely populated areas with a variety of public and commercial services".

Main services:

- Small package delivery,
- Aerial photography,
- News reporting
- Infrastructure inspection,

- First responders
- Law enforcement functions

• Air Taxi (Flying cars) (scheduled services / On-demand ride)

NASA - National Aeronautics and Space Administration)

eVTOL – Electric Vertical Takeoff and Landing

eVTOLs - Commonalities

- Vertical takeoff and landing (operational versatility)
- Electric or hybrid propulsion for low cost and high reliability
- Multiple rotors (smaller and quieter than conventional helicopter rotors

Photo credit: Joby Aviation

- Increasing number request received by EASA for eVTOL type certification
- Traditional airplanes / helicopters manufactures and new players.
- Evolution of aircraft systems' monitoring technology and increasing amounts of data (Big Data)

Comparative Importance of Various Passenger Experience Factors when Evaluating a New Transportation Option

Aeronautical Accidents

- The number of aeronautical accidents has decrease over the last years.
- 60 80% of those accidents are result of humanfailure.

 Several eVTOL operators intent to have the autonomous fly capability

Autonomous Flight

- Current aircraft have had their systems being automated for years. Challenges: Diagnosis, Addressing ambiguity and etc.
- In initial stages of eVTOL implementation Machine Learning can support in the safety assessment process (identification of unknown-unknown failure scenarios / support pilots predicting system failures and improving reliability and safety).
- In an advanced stage of eVTOL operation, ML may support to reduce the human interaction with eVTOL, that opens possibilities for an autonomous aircraft

Logical analysis of data (LAD)

 Annual distribution of published journal articles focusing on the use of machine learning methods to perform risk assessment

	RISK			
	Catastrophic	Hazardous	Major	Minor
Probable	Extremely High	High	Medium	Low
Remote	High	Medium	Low	Low
Extremely Remote	Medium	Low	Low	Low
Extremely Improbable	Low	Low	Low	Low

Severity

Probability

Known knowns

Scenario #1 – Predicting Failures in the eVTOL systems

Scenario #2 - Aircraft Certification Aspects

Conclusion

• Pattern generation has potential applications in the eVTOLs

• For "classical" software approach: more research is thus necessary

Thank you

Marcos Salvador marcos.Salvador@polymtl.ca