

12TH CONASENSE SYMPOSIUM 2022, MUNICH, GERMANY

GDOP optimised LEO constellation for Positioning Estimation

Authors: <u>Harshal More</u>, Mauro De Sanctis, Ernestina Cianca, Cosimo Stallo

Department of Electronics Engineering, University of Rome "Tor Vergata", Italy

Objective

"To design a dedicated architecture of LEO constellation using GA which is aimed to minimize the GDOP and maximize the global coverage with at least 4 visible satellites at a given epoch."

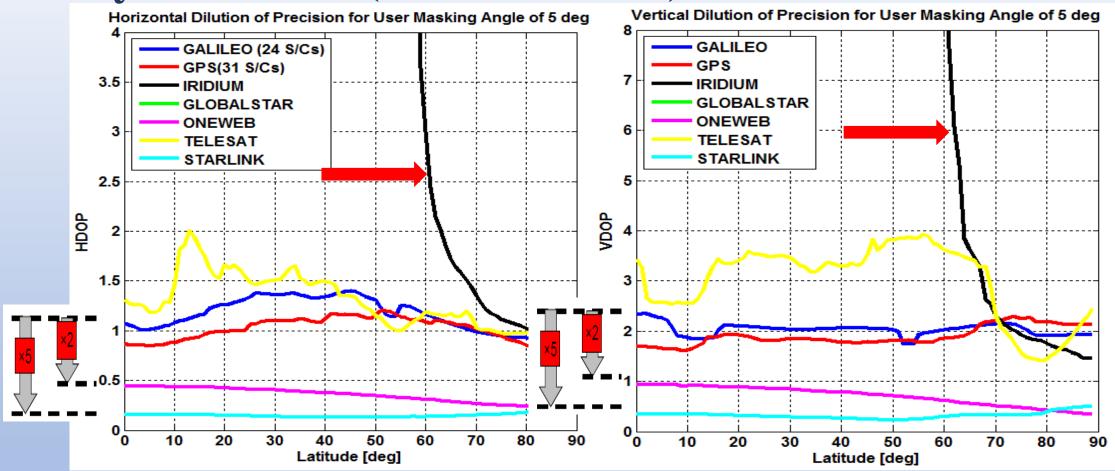
Outline

- Review of the state of art in LEO PNT.
- Analysis of some selected constellations to get the initial hints to fix some orbital parameters.
- Mathematical modelling
- Genetic algorithm (GA) setting and implementation.
- Simulation, results and analysis.
- Conclusion and future steps.

State of Art in LEO PNT

- **High velocity** →LEO **Doppler based positioning** → GNSS + Terrestrial Navigation.
- Lower altitude → free space losses 10 dB lower w.r.t. MEO →LEO signals are more powerful than GNSS signals.
- Wide range of frequency bands available. (UHF/VHF, L, S, C Ka, Ku etc)
- Spreading loss at zenith for LEO (-69dB), MEO (-97dB).
- Reduce **multipath** in an urban canyon.
- Fast convergence time (GNSS: 20-40 min, LEO: 1-10 min)
- More visible satellites for Mega constellations.

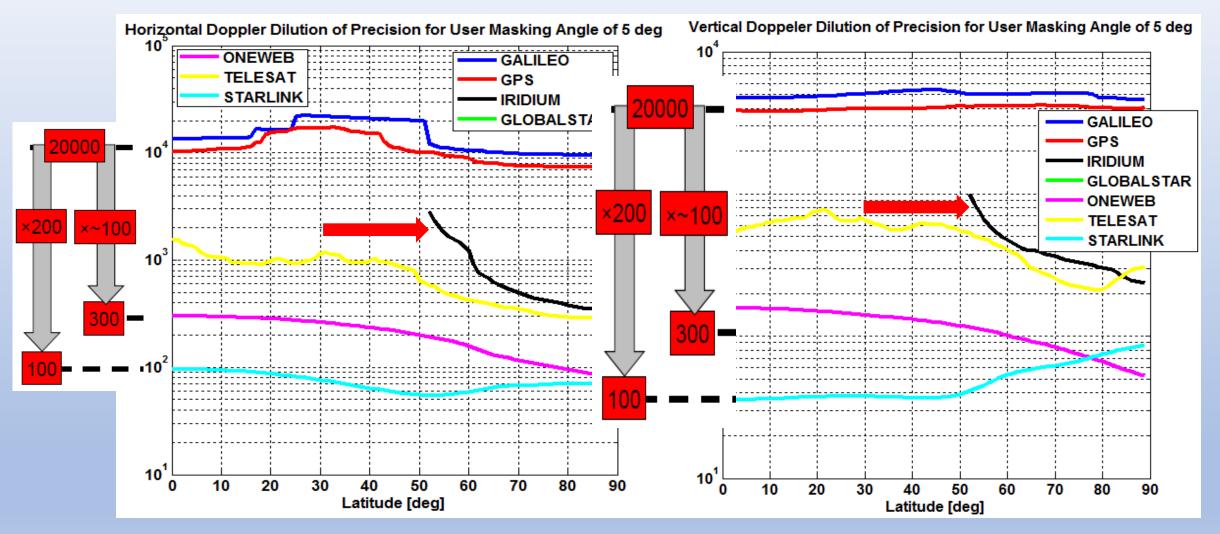
Overview of the Orbital Parameters [1]


Constellation	Application	Altitud p orbit (I a)	Mean Velocity (Km/s)	Period (minutes)	Orbital Planes per Orbit	Satellites per Plane	Total Number of Satellites	Inclination (degrees)	Eccentricity	FrequencyBands// Downlink
GPS	Navigation	2 2	3.8	8 720	6	4	24	55	0	L1 - 1575.42 Mhz L2 -1227.60 MHz
GALLILEO	Navigation	2 <mark>3,</mark> 2	22 3.6	6 845	3	6	24+6	56	0	E -1176-1207 MHz
StarLink	Global Internet Broadband	335 340 345	.9 7.557 .8 7.583 .6 7.609 50 7.498 10 7.213 80 7.269 75 7.212	9 8 4 9 6 8	9 7 9 24 32 8 5 6	77 354 283 66 50 50 75 75	11943	42 48 53 53 53.8 74 81 70		K-band: 17.8-18-5 GHz 18.8-19.3 GHz 19.7-20.2 GHz V-band: 37.5-42.0 GHz
Iridium Next	Narrowband Communications	7		_	6	11	66			L-band: 1.616-1.63 GHz K-band: 19.3-19.7 GHz
Oneweb	Global Internet Broadband	120	0 7.2	4 110	18	36	358	87.9	0	Ku-Ka Bands
LEO - 192	Literature	10	00 7,3	7 105	12		192	90	0	Not defined
		6	9.9	7 96	12			90		Not defined
LEO-288	Literature	10	00 7,3	7 105	12		288	90		Not defined

H = 1250 km, e = 0, w = 0, Hybrid Configuration (sub-Walker constellation)

24/06/2022

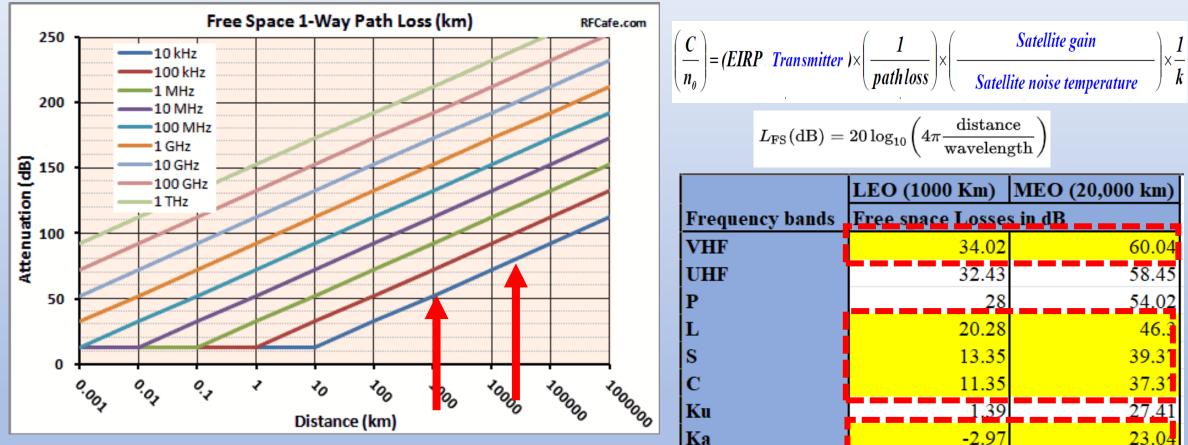
Università di Roma


Analysis of DOP (HDOP/VDOP) - I

- Starlink and Oneweb has 5X & 2X times less HDOP/VDOP with respect to Galileo and GPS.

- For Iridium minimum no. of visible satellites at a given epoch are lower than 4 so worst DOP [2].

Analysis of Doppler DOP (HDDOP/VDDOP) - II

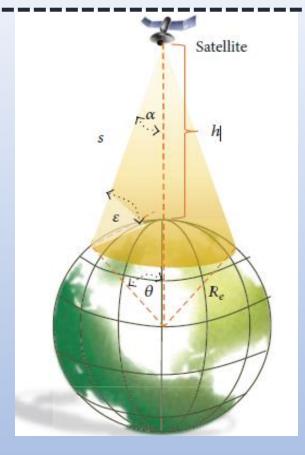


Università di Roma

Tor Ve

Mega Constellations DDOP is in order of 2 whereas, MEO in order of 4 as expected. (Results are verified in MATLAB 24/05/2022 7

Analysis of C/No and Free Space losses for different frequency bands - III


SNR is inversely proportional to path losses L_{FS} . From the formulation and table below free space losses for MEO (20000 km) and LEO (1000 km)

Variation attenuation against distance for different frequency range. Blue color box shows LEO and red color box shows MEO orbits [3].

Calculated free space losses using mentioned formulae. For given frequency bands. S, C bands shows three times less loss for LEO than MEO.

Università di Roma

Mathematical Modelling

Single Satellite Coverage [4]

1. Sub-Walker – I (Polar Orbits) 2. Equatorial Orthogonal Orbit **3.** Sub-Walker – II (Optimized)

Sub-Walker – I (Polar Orbits) & Equatorial Orthogonal Orbit

$$\{(P_p - 1). \arcsin[\tan(\alpha)\cos(\pi/S_e)] + \\ (P_p + 1) \arcsin\left[\frac{\sin(c)\cos(\pi/S_e)}{\cos(\alpha)}\right] \} \eta = \pi$$

$$Pp = no. of planes,$$

$$Sp = no. of satellites$$

$$Se = equatorial Sats$$

$$\alpha = half cone angle,$$

$$\eta = * factor set to 1$$

where:

 $a_{ii} = a_0$

 $e_{ij} = e_0$

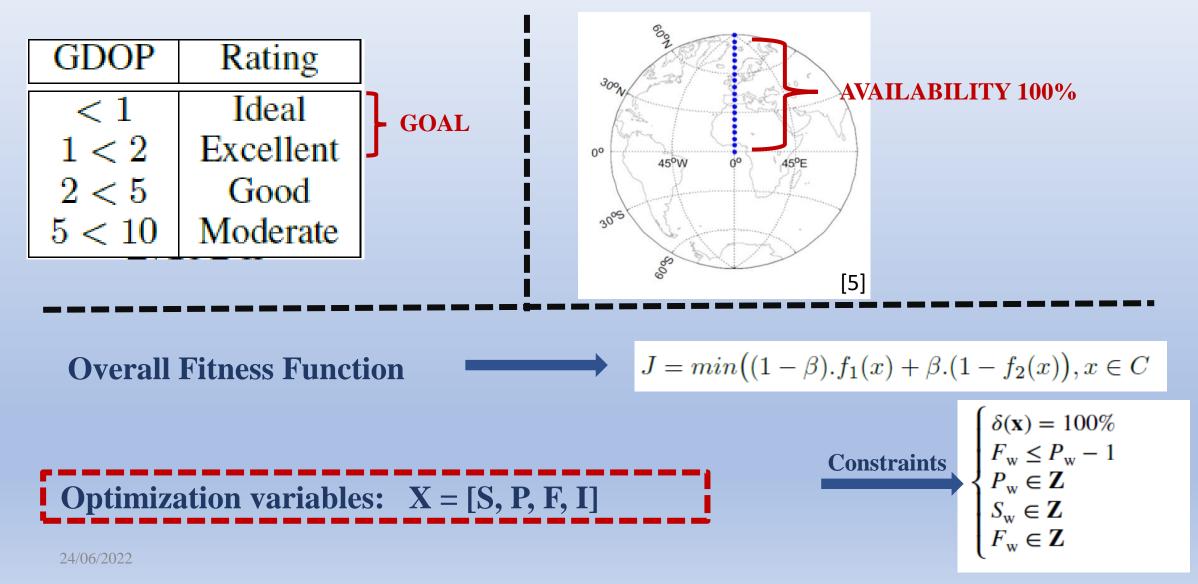
$$c = \arccos\left[\frac{\cos(\alpha)}{\cos(pi/S_p)}\right]$$

Sub-Walker – II (a:I:T/P/F)

 $\begin{cases} I_{ij}^{g} = I_{0} \\ \Omega_{ij} = \Omega_{0} + \frac{360^{\circ}}{P_{w}} \cdot (i-1) \\ \omega_{ij} = \omega_{0} \\ \mathcal{M}_{ij} = \mathcal{M}_{0} + \frac{360^{\circ}}{P_{w}S_{w}}F_{w} \cdot (i-1) + \frac{360^{\circ}}{S_{w}} \cdot (j-1) \end{cases}$

a = semimajor axis, I = inclination, **T** = total number of satellite, **P**=Total number of Planes (RAAN), **F** - Phasing between (Mean Anomaly), S = T*P

es

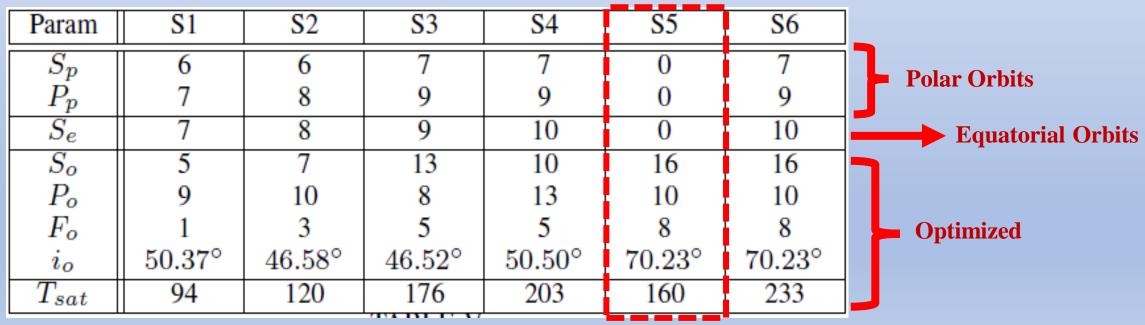

ts

le.

GA implementation to improve performance

1. GDOP - Minimise

2. Visibility of at least 4 satellites at global level (Maximise)

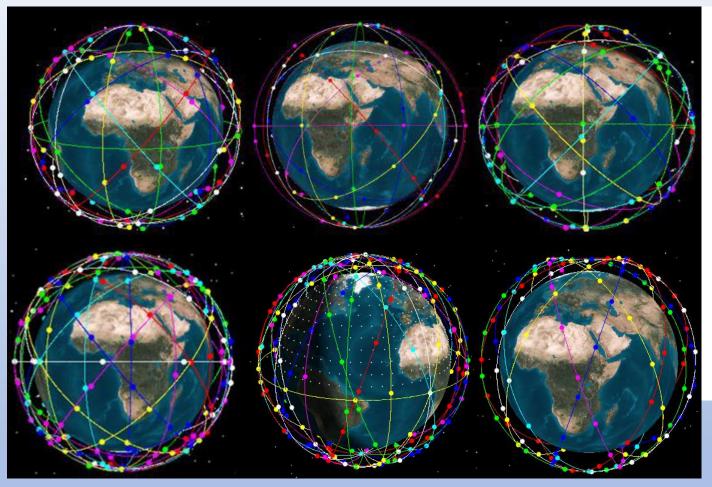

GA settings an Hybrid Configurations

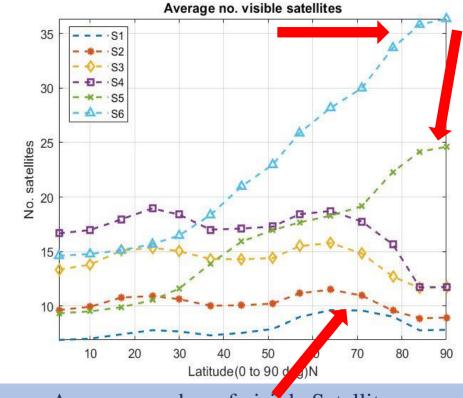
Parameters	value		
Population Size	300/400/500		
Max generations	30/40/50/100		
MINLP	S,P,F		
Probability of crossover	0.8		
Probability of mutation	0.194		
Penalty	5		

X/e	S 1(7°)	S2(10°)	S3(15°)	S4(20°)	S5(20°)	S6(20°)
S_o	4-12	4-12	4-15	4-12	4-15	4-15
P_o	1-10	1-10	1-10	1-10	10-20	10-20
F_o	1-9	1-9	1-9	1-9	1-15	1-15
i_o	$45^{\circ}-60^{\circ}$	$45^{\circ}-60^{\circ}$	$45^{\circ}-60^{\circ}$	$45^{\circ}-60^{\circ}$	$70^{\circ}-90^{\circ}$	70° - 90°

Setting of GA algorithm

Search Ranges for optimization variables (X) for different configurations

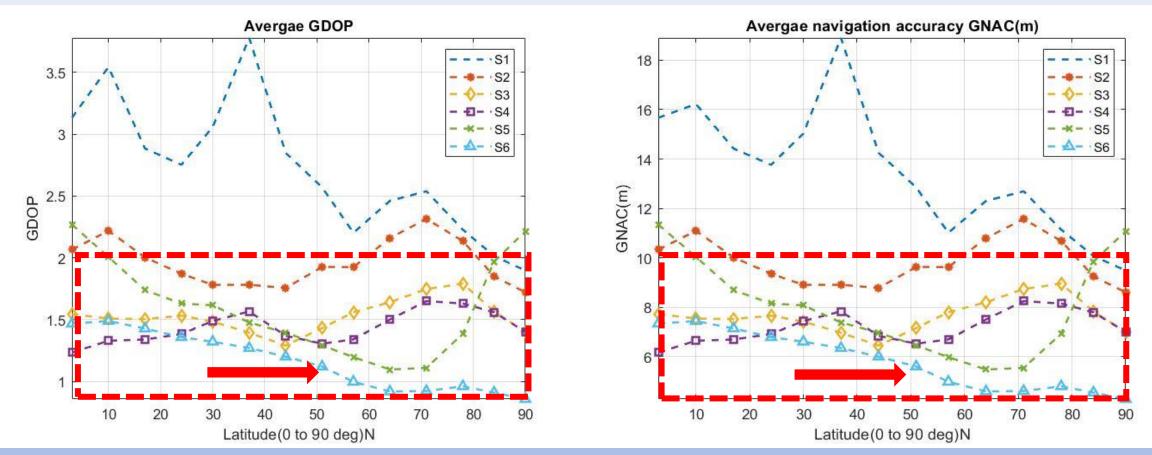



Hybrid Configurations for different Elevation Mask angles

Università di Roma

Tor Verga

Results and Analysis – I (Visibility of Obtained configuration)

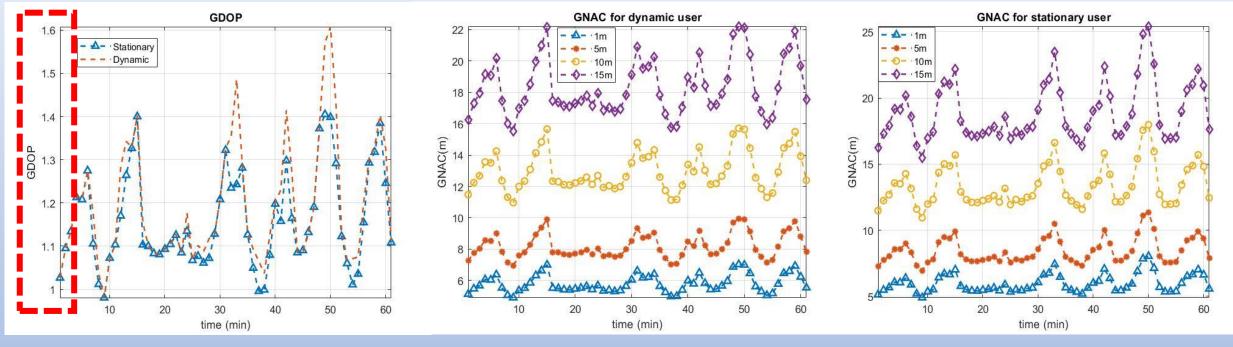

Average number of visible Satellites over Latitude (0- 90 Deg)

STK Plots for cases S1, S2, S3 (Top : L-R), cases S4, S5, S6 (Bottom: L-R)

Università di Roma

Results and Analysis – II (GDOP and GNAC)

GNAC over the latitude (0° - 90°) North

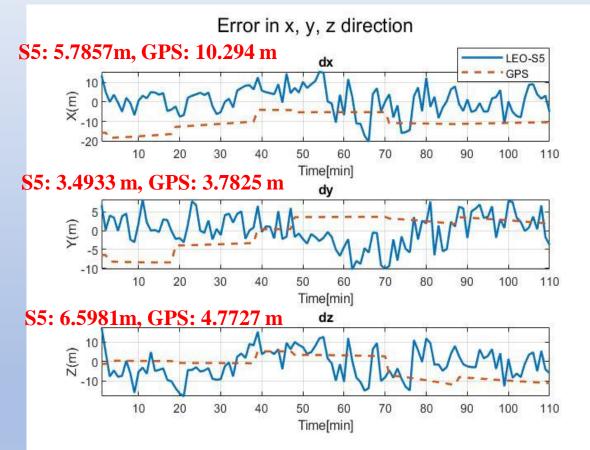

GDOP over the latitude (0 - 90 deg) North

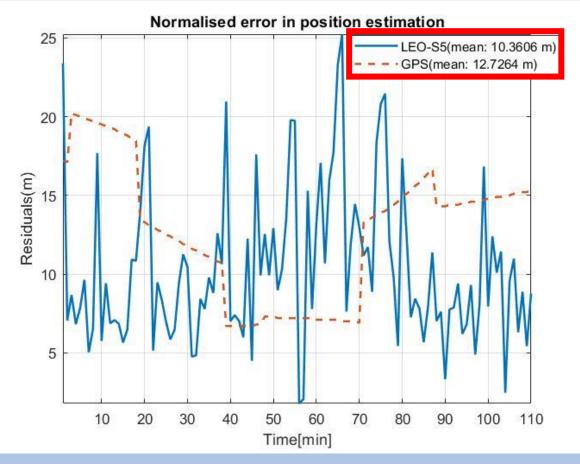
Results and Analysis – III (GDOP and GNAC for Static and Dynamic simulated users)

Case S5

Error of std 1m, 5 m, 10 m, 15 m is added

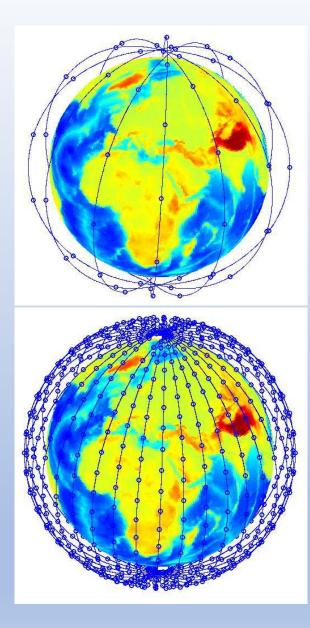
(a) GDOP for stationary and dynamics user for 60 min

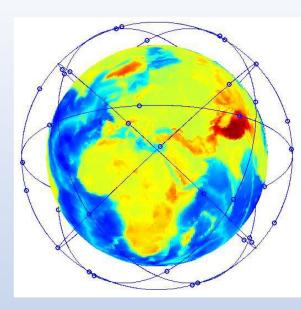

(b) GNAC for stationary user for 60 min


(c) GNAC for dynamic user for 60 min

Results and Analysis – IV (LS estimation for User positioning using case S5 and GNSS)

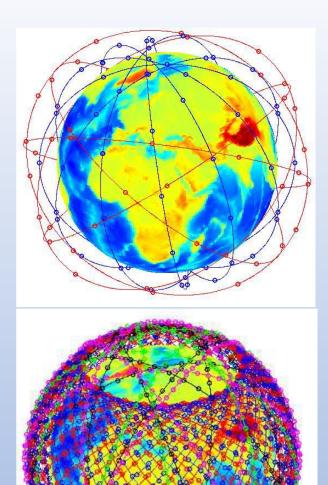
A standard normal distribution noise of 10 m


Normalised error in positioning estimation


LS estimation error in x,y,z directions

Conclusion and Future steps

- Università di Roma
- Optimised LEO based navigation can be complimentary/standalone solution in presence of threats.
- The proposed optimized configurations can provide PNT services.
- The hybrid sub-Walker configuration provides 100% global coverage with at least 5 visible satellites at given epoch.
- The GDOP values of all obtained solutions are in the excellent range (1 to 2).
- Average error in positioning estimation is about **10.3606 m and 12.7264 m** for LEO and MEO (**std 10 m**).
- Improvement in DOP can relax accuracy correction models (Cheap LEO clock), and with less transmission power (**up 6 dB w.r.t. 14 dB**).
- We have plans to investigate the **integration of LEO+MEO**, **LEO+INS** signals in GNSS denied environment (**Urban canyon**).



Thank you !

catchmemore@gmail.com

Università di Roma

References

- 1. Xingxing Li1,2 · Fujian Ma1 · Xin Li1 · Hongbo Lv1 · Lang Bian3 · Zihao Jiang1 · Xiaohong Zhang1, LEO constellation-augmented multi-GNSS for rapid PPP convergence,
- 2. Francis Soualle. (2018). "Perspectives of PNT Services Supported by Mega-Constellations." ITSN, GPS World.
- 3. <u>www.rfcafe.com</u>
- 4. Tania Savitri, Youngjoo Kim, Sujang Jo, and Hyochoong Bang. (2017). "Satellite Constellation Orbit Design Optimization with Combined Genetic Algorithm and Semianalytical Approach. International Journal of Aerospace Engineering." Hindawi, article ID 1235692.
- 5. Fujian Ma, Xiaohong Zhang1, Xingxing Li, Junlong Cheng, Fei Guo, Jiahuan. (2020)."Hybrid constellation design using a genetic algorithm for a LEO-based navigation augmentation system." GPS Solutions Volume 24.