Basic considerations on Terahertz communication systems

Werner Mohr Consultant

CONASENSE 2021, October 4 and 5, 2021, Munich, Germany

Objective of this presentation to understand

- physical limits in terms of capacity and range
- impact on application scenarios
- under constraints of radiation limits
- but idealized conditions

Outline

- Potential technical KPIs
- Frequency bands
- Radiation limits
- Propagation conditions
- Link capacity versus range
- Coherence time
- Means for range extension by keeping radiation limits
- Remote sensing applications based on active Radar concepts
- Conclusion

Examples of technical KPIs for future systems

Target KPI	5G NR	5G NR SEVO	5G NR MEVO	5G NR LEVO
Spectrum	< 52.6 GHz	< 250 GHz	< 500 GHz	< 1000 GHz
Bandwidth	< 0.5 GHz	< 2.5 GHz	< 5 GHz	< 10 GHz
Peak Data Rate	DL: > 20 Gbps	DL: > 100 Gbps	DL: > 200 Gbps	DL: > 400 Gbps
	UL: > 10 Gbps	UL: > 50 Gbps	UL: > 100 Gbps	UL: > 200 Gbps
User Data Rate	DL: > 100 Mbps	DL: > 500 Mbps	DL: > 1 Gbps	DL:> 2 Gbps
	UL: > 50 Mbps	UL: > 250 Mbps	UL: > 0.5 Gbps	UL: > 1 Gbps
Peak Spectral Efficiency	DL: > 30 bps/Hz	DL: > 40 bps/Hz	DL: > 50 bps/Hz	DL: > 60 bps/Hz
	UL: > 15 bps/Hz	UL: > 20 bps/Hz	UL: > 25 bps/Hz	UL: > 30 bps/Hz
Density	> 1 device/sqm	> 1.3 device/sqm	> 1.7 device/sqm	> 2 device/sqm
Area Traffic Capacity	> 10 Mbps/sqm	> 50 Mbps/sqm	> 100 Mbps/sqm	> 200 Mbps/sqm
Reliability	URLLC: > 1 - 10 ⁻⁵	> 1 - 10 ⁻⁶	> 1 - 10 ⁻⁸	> 1 - 10 ⁻⁹
U-Plane Latency	URLLC: < 1 ms	< 0.5 ms	< 0.2 ms	< 0.1 ms
C-Plane Latency	< 20 ms	< 10 ms	< 4 ms	< 2 ms
Net. Energy Efficiency	Qualitative	> 30 % gain	> 70 % gain	> 100% gain
Term. Energy Efficiency	Qualitative	> 30 % gain	> 70 % gain	> 100% gain
Mobility	< 500 Km/h	< 500 Km/h	< 500 Km/h	< 1000 Km/h
Positioning accuracy	NA (< 1 m)	< 30 cm	< 10 cm	< 1 cm

Source: EMPOWER project: HORIZON 2020 ICT, Deliverable 2.2: First Technology roadmap for advanced wireless. https://www.advancedwireless.eu/wp-content/uploads/Deliverables/EMPOWER deliverable D2 2 final.pdf.

Potential frequency bands

102	-	105 GHz
<mark>105</mark>	_	109.5 GHz
111.8		114.25 GHz
122.25	-	123 GHz
130	-	134 GHz
141	-	148.5 GHz
151.5	—	155.5 GHz
155.5	-	158.5 GHz
158.5	—	164 GHz
167	—	174.5 GHz
174.5	—	174.8 GHz
191.8	-	200 GHz
209	—	217 GHz
<mark>217</mark>	-	226 GHz
231.5	-	232 GHz
232	—	235 GHz
238	—	240 GHz
240	-	241 GHz
252	_	265 GHz
265	_	275 GHz

- However, opening for several bands for fixed and land mobile service applications in addendum to footnote 5.564A in WRC 2019 Final Acts
 - No specific conditions
 - ▶ 275 296 GHz
 - ▶ 306 313 GHz
 - > 318 333 GHz (atmospheric absorption peak at 324 GHz)
 - Specific conditions to protect earth exploration satellites (passive service)
 - > 296 306 GHz
 - ▶ 313 318 GHz
 - ▶ 333 356 GHz
- In footnote 5.565 many bands up to 1000 GHz allocated to
 - Radio astronomy
 - ► Earth exploration satellite service (passive) and space research (passive)

- Mobile allocation besides other allocations in ITU Radio Regulation 2016
- Changes in ITU WRC 2019
 - Loss of mobile allocation
 - Kept mobile allocation, but change in overall allocation (Fixed, Radio astronomy)
 - and above up to 3000 GHz no allocation anymore

ITU: World Radiocommunication Conference 2019 (WRC-19) Final Acts. 28 October – 22 November Sharm El-Sheikh, Egypt, 2020, https://www.itu.int/dms_pub/itu-r/opb/act/R-ACT-WRC.14-2019-PDF-E.pdf.

Radiation limits Such limits are provided up to 300 GHz

General Public

- Reference levels for time averaged general public exposures of ≥ 6 min, to electromagnetic fields from 100 kHz to 300 GHz (unperturbed rms values; see Tables 5 and 6 for full specification) [ICNIRP] in 2020
- Values for local exposure only 3 to 6 dB higher than for full body exposure
 - > $3 \text{ dB}: r/r_0 = 1.41$ $3 \text{ dB} = 20 \cdot \log(r/r_0)$
 - 6 dB: $r/r_0 = 2$ 6 dB = $20 \cdot \log(r/r_0)$

Sources: ICNIRP: ICNIRP Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). ICNIRP publication 2020.

ICNIRP: ICNIRP Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). ICNIRP publication 1998

European Commission: Council Recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz). (1999/519/EC), July 30, 1999, <u>https://op.europa.eu/en/publication-detail/-/publication/9509b04f-1df0-4221-bfa2-c7af77975556/language-en</u>.

NISV: Verordnung zum Schutz vor schädlichen Wirkungen nichtionisierender Strahlung bei der Anwendung am Menschen (NiSV). 2020, <u>https://www.buzer.de/NiSV.htm</u>.

Radiation density EIRP is relevant parameter

▶ EIRP

$$EIRP = P_t \cdot G_t$$

Radiation density S

$$S = \frac{EIRP}{4 \cdot \pi \cdot r^2} = \frac{P_t \cdot G_t}{4 \cdot \pi \cdot r^2}$$

- Assumed reference distance
 - end devices used very closely by humans:
 - access points or base stations:

$$r_{min, d} = 0.1 \text{ m}$$

 $r_{min, BS} = 1.0 \text{ m}$

with

$$S_{max} \le 10^{W}/m^{2} = 1^{mW}/cm^{2}$$

- In the approach to keep effective area A constant
 - receiver benefits from increased antenna gain with increased frequency
 - but for transmitter the transmit power P_t needs to be adapted to keep radiation density S within allowed limits
 - *EIRP* needs to be constant versus frequency

Three cases of antenna configurations

Keeping either antenna gain or effective antenna area constant versus frequend

Friis formula between receive and transmit power (assumption: free-space propagation)

Source: Rappaport, T.S., Xing, Y., Kanhere, O., Ju, S., Madanayake, A., Mandal, S., Alkhateeb, A., and G.C. Trichopoulos: Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access, Vol.7, 2019, pp. 7829, <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8732419</u>.

Near field versus far field Low range results often in near field propagation conditions

D_A Fresnel Region Far-field Fresnel Region Far-field r₁ Near-field

- With increasing frequency far field region is growing
- Massive MIMO requires bigger antenna arrays
- System often operated under near field conditions, where far field antenna patterns do not apply
- What is the impact on MIMO algorithms?

Source: Zinke, O. and H. Brunswig: Lehrbuch der Hochfrequenztechnik. Vol. I, Springer-Verlag, Berlin, Heidelberg, New York, 2nd Edition, 1973.

Path-loss models

General path-loss model

 $L_{ln}(r) = \overline{L_{ln}(r_0)} + 10 \cdot n \cdot \log\left(\frac{r}{r_0}\right) + X_{\sigma} \quad [dB]$

- With respect to high path-loss only deployment scenarios with free space propagation (n = 2) assumed
- > X_{σ} zero mean Gaussian process in [dB] to describe random shadow fading
- Short-term fading (mainly Rice fading in this case) not considered, this would require additional margins
- Free-space propagation

$$L_{p,FS} = \left(\frac{c_0}{4\pi rf}\right)^2$$
 or $L_{p,FS} = 32.44 + 20 \cdot \log f + 20 \cdot \log r$ [dB]

First Fresnel-zone very narrow in Terahertz domain

$$R_{F,n} = \sqrt{n \cdot \lambda \cdot \frac{r_T + r_R}{r_T \cdot r_R}}$$

- atmospheric path-loss due to water vapor, oxygen, other gases L_{at} (indoor and outdoor)
- > rain (and mist and fog) attenuation L_r (outdoor) and
- ▶ foliage attenuation *L_{fol}* (outdoor)
- wall penetration due to high path-loss not considered

$$L_{p,total,outdoor}(f,r) = L_{p,FS}(f,r) + \frac{L_{at}(f,r_0=1km)}{1km} \cdot r + L_r(f,r) + L_{fol}(f,r) \, [dB]$$

Source: Rappaport T.S.: Wireless Communications - Principles & Practice. New Jersey: Prentice Hall 1996.

9

Atmospheric attenuation

Source: Brodhage, H. and W. Hormuth: Planung und Berechnung von Richtfunkverbindungen. 10th updated edition, Siemens AG, Berlin – Munich, 1977.

Atmospheric attenuation

https://www.google.de/search?q=atmospheric+attenuation&tbm=isch&imgil=_7j3UAzMc8V24M%253A%253BxavIlyPM90TYtM%253Bhttp%25253A%25252F%25252Fpropagation.ece.gate ch.edu%25252FECE6390%25252Fproject%25252FFall2012%25252FTeam09%25252FTeam9GeoSatTech_website_FINAL%25252FSatCom%2525252520website%25252FatmosphericAt tenuation.html&source=iu&pf=m&fir=_7j3UAzMc8V24M%253A%252CxavIlyPM90TYtM%252C_&usg=_Mg-xPyoRjIv0FLIIGW36BAnbW9k%3D&6iw=1325&bih=731&ved=0ahUKEwi5-47n0sLVAhUgS48KHZz6DV0QyjcINA&ei=lhCHWbnY06CWvQSc9bfoBQ#imgrc=h7rXWaRh3pkrGM:&spf=1502023840468.

Rappaport, T.S., Xing, Y., Kanhere, O., Ju, S., Madanayake, A., Mandal, S., Alkhateeb, A., and G.C. Trichopoulos: Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access, Vol.7, 2019, pp. 7829, <u>https://ieeexplore.ieee.org/stamp/stamp/stamp.jsp?tp=&arnumber=8732419</u>.

Atmospheric attenuation in relation to frequency spectrum

Not allocated frequency bands are somehow correlated with absorption peaks

Source: Rappaport, T.S., Xing, Y., Kanhere, O., Ju, S., Madanayake, A., Mandal, S., Alkhateeb, A., and G.C. Trichopoulos: Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access, Vol.7, 2019, pp. 7829, https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8732419. ITU: Radio Regulations 2016, Vol. I to Vol. IV. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8732419. ITU: World Radiocommunication Conference 2019 (WRC-19) Final Acts. 28 October – 22 November Sharm El-Sheikh, Egypt, 2020, https://www.itu.int/dms_pub/itu-r/opb/act/R-ACT-WRC.14-2019-PDF-E.pdf.

Rain attenuation

Source: Brodhage, H. and W. Hormuth: Planung und Berechnung von Richtfunkverbindungen. 10th updated edition, Siemens AG, Berlin – Munich, 1977.
Recommendations and Reports of the CCIR: XVIth Plenary Assembly, Dubrovnik 1986, Vol. V: Propagation in Non-Ionized Media, Report 338-5, Propagation Data and Prediction Methods Required for Line-of Sight Radio Relay Systems, ITU, Geneva 1986.
ITU-CCIR: CCIR Rep. 721-1, Recommendations and Reports of the CCIR, 1982, XV Plenary Assembly, Geneva 1982, Vol. 5.
Jung, V. and H.-J. Warnecke: Handbuch für die Telekommunikation. Springer Verlag, Berlin, second edition, 2002.

Foliage attenuation

$$L_{fol} = 0.2 \cdot f^{0.3} \cdot \Delta r^{0.6} \, [\text{dB}]$$

Where

^{*L*_{fol} [dB]} 70

- *f* frequency in [MHz]
- Δr depth of transversing foliage in [m]
- and applied for $\Delta r < 400$ m
- Model is limited to f < 90 GHz</p>

Source: Federal Communications Commission: Millimeter Wave Propagation: Spectrum Management Implications. Office of Engineering and Technology, New Technology Development Division, Bulletin Number 70, July 1997.

Link capacity versus range

Investigation at Shannon limit as best-case example

$$P_{r,min} = EIRP + G_r - L_p - L_{at} \cdot r - L_r \cdot r - M_{real} = \frac{S}{N} + N_0 + 10 \cdot \log W \Big|_{H_Z} + F \quad [dBm]$$

With increased bandwidth W compared to a reference bandwidth W_0 the link-budget is reduced by

$$\begin{split} \Delta L &= 10 \cdot \log \left(\frac{W}{W_0} \right) \quad [dB] \\ C_{max} &= W \cdot \log_2 \left(1 + \frac{P_{r,min'}}{W \cdot N_0' \cdot F'} \right) \\ &= W \cdot \log_2 \left(1 + \frac{P_t' \cdot G_{t'} \cdot G_{r'}}{W \cdot N_0' \cdot F'} \cdot \left(\frac{1}{4 \cdot \pi \cdot r} \cdot \frac{c_0}{f} \right)^2 \cdot \left(L_{at,1km'} \cdot L_{r,1km'} \right)^r \cdot M_{real'} \right) \\ &= W \cdot \log_2 \left(1 + \frac{EIRP_{max'} \cdot G_{r'}}{W \cdot N_0' \cdot F'} \cdot \left(\frac{1}{4 \cdot \pi \cdot r} \cdot \frac{c_0}{f} \right)^2 \cdot \left(L_{at,1km'} \cdot L_{r,1km'} \right)^r \cdot M_{real'} \right) \end{split}$$

Selected parameters

Parameter		Values and comments		
f [GHz]		245	515	780
<i>G</i> , [dB]	b Downlink: Tablet, laptop, $d_a = 0.02$ m	34.2	40.7	44.3
	$(d_a = 0.1 \text{ m})$	(48.2)	(54.6)	(58.3)
		57.7	64.5	67.8
	• Uplink: Base station, $d_a = 0.3$ m			
<i>EIRP</i> [dBm]	Downlink	51 dBm ≘ 125.7 W		
	Uplink	31 dBm ≘ 1.257 W		
L _{at} [dB/km]	15 g/m ³ water vapor density (245 GHz)	6.3 to 10	240	260
	80 % humidity (515 GHz and 780 GHz)	8 average	average	
L _r [dB/km]	Region 1	58.11	51.57	51.57
	Region 3	36.06	31.10	31.10
	Region 5	19.19	17.18	17.18
M _{eral} [dB]		2	2	2
N _o [dBm/Hz]	290 K noise temperature	-174	-174	-174
<i>F</i> [dB]		2 to 5	2 to 5	2 to 5
W[GHz]	Parameter within the following limits	0 to 140 max	0 to 109 max	0 to 150 max
		1 GHz	1 GHz	1 GHz
		10 GHz	10 GHz	10 GHz
		100 GHz	100 GHz	100 GHz
		140 GHz	109 GHz	150 GHz

* x' means value in linear domain

Downlink indoor capacity versus range

> Atmospheric attenuation for higher vapor density (15 g/m³), tablets and laptops, F = 2 dB

Uplink indoor capacity versus range

Atmospheric attenuation for higher vapor density (15 g/m³), base stations, F = 2 and 5 dB

Downlink outdoor capacity versus range

Atmospheric attenuation for higher vapor density (15 g/m³), rain attenuation for Regions 1, 3 and 5 (ρ = 0.001 %), tablets and laptops, *F* = 2 dB

Uplink outdoor capacity versus range

Atmospheric attenuation for higher vapor density (15 g/m³), rain attenuation for Regions 1, 3 and 5 (ρ = 0.001 %), base stations, *F* = 2 and 5 dB

Coherence time

Different definitions of coherence time

$$T_{c} \approx \frac{1}{f_{d,max}} \qquad T_{c,1} \approx \frac{1}{D_{s}} \qquad T_{c,2} \approx \frac{9}{16 \cdot \pi \cdot f_{d,max}} = \frac{1}{5.59 \cdot f_{d,max}} \qquad T_{c,3} \approx \sqrt{\frac{9}{16 \cdot \pi \cdot f_{d,max}^{2}}} = \frac{3}{4 \cdot \sqrt{\pi} \cdot f_{d,max}}$$

• Evaluation for $T_{c,3}$

Coherence time is very short, which requires very fast channel estimation and adaptation

Source: Rappaport T.S.: Wireless Communications - Principles & Practice. New Jersey: Prentice Hall 1996. Tse, D. and P. Viswanath: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge, 2005. Steele, R.: Mobile radio communications. Pentech Press Publishers, London and IEEE Press, New York, 1994. 1

 $\overline{2.36 \cdot f_{d.max}}$

 $T_{c,4} \approx \frac{1}{4 \cdot D_s}$

Means for range extension by keeping radiation limits

Propagation scenario with increased base station antenna height $\Delta h = h_{BS} - h_{MS}$

- Elevation antenna diagram $G(\vartheta)$ considered
- ▶ This allows to increase maximum allowed *EIRP_{max}* and thereby propagation range *r* towards cell edge

Means for range extension by keeping radiation limits

- Maximum allowed EIRP_{max} versus distance r₀ between base station location and location of human
- Assumptions
 - **Figure 3** Transmit antenna elevation diagram corresponds to Hertz dipole $sin^2(\vartheta)$ (simplification)
 - ► Downtilt angle $\delta = 0^\circ$

- Minimum at $r_0 = \Delta h$ provides maximum allowed $EIRP_{max}(\Delta h) = 10 \frac{W}{m^2} \cdot 16 \cdot \pi \cdot \Delta h^2$
- $EIRP_{max}$ allows to avoid exclusion zone with $r_0 = 0$

Means for range extension by keeping radiation limits

For Friis formula of free-space propagation without additional attenuation components (atmosphere, rain) relative range extension r''/r' independent of range r'

$$\frac{r''}{r'} = \frac{2 \cdot \Delta h}{r_{min,BS}}$$

Outdoor including free-space, atmospheric and rain attenuation

For additional attenuation components (atmosphere, rain) relative range extension r"/r' is decreasing with range r', r"/r' follows from zero search of

Indoor and outdoor including free-space, atmospheric and rain attenuation compared to upper limit of free-space only

r'[km]

Remote sensing applications based on active Radar concepts

- Sensing is based on Radar concepts
- Radar equation applies with Radar cross section σ depending on illuminated object (free space)

$$\frac{P_r}{P_t} = G_t \cdot \frac{1}{4\pi r^2} \cdot \sigma \cdot \frac{1}{4\pi r^2} \cdot A_r = G_t^2 \cdot \frac{c_0^2}{(4\pi)^3 \cdot r^4 \cdot f^2} \cdot \sigma$$

- Even under free-space propagation conditions without additional attenuation (atmosphere, rain) the effective path-loss is increasing with r^4
- Significant impact on achievable range r for higher frequencies, where atmospheric and rain attenuation are significant

$$\frac{P_r}{P_t} = G_t \cdot \frac{1}{4\pi r^2} \cdot (L_{at} \cdot L_r)^r \cdot \sigma \cdot \frac{1}{4\pi r^2} \cdot (L_{at} \cdot L_r)^r \cdot A_r = G_t^2 \cdot \frac{C_0^2}{(4\pi)^3 \cdot r^4 \cdot f^2} \cdot \sigma \cdot (L_{at} \cdot L_r)^{2r}$$

Applications are limited to short range

Source: Meinke/Gundlach: Taschenbach der Hochfrequenztechnik. Berlin: Springer-Verlag 1986.

Conclusion

- Terahertz systems considered as part of beyond 5G / 6G systems
- Currently challenging technical requirements discussed in terms of carrier frequency, bandwidth and throughput
- Opportunity to identify significantly wider contiguous frequency bands in future WRCs in discussion with other service communities (radio astronomy, earth exploration satellites)
- > In case of humans are involved in use cases and applications radiation limits to be respected
- Due to short range and high transmit antenna gain Terahertz systems mainly operated under near field conditions
- Path-loss significantly affected by
 - free space propagation (first Fresnel zone free of obstacles)
 - atmospheric attenuation
 - rain attenuation
 - foliage loss (should be avoided in deployments)
 - wall penetration loss scenarios not considered, because communication basically impossible
- Much better performance in terms of capacity versus range for indoor scenarios due to rain in outdoor
- Atmospheric attenuation can only be avoided in vacuum, e.g., inter-satellite links
- > Higher base station antenna locations can increase range to a certain extend in downlink
- In summary:
 - Significant range limitations need to be considered for definition of use cases and applications especially for high throughput systems and where radiation limits to secure humans must be respected
 - For backhaul and fronthaul systems less stringent requirement on radiation limits, if no humans involved
 - Terahertz systems as cable replacements in data centers
 - Inter-satellite links in vacuum provides good propagation conditions